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5.  Second Law of Thermodynamics

First law:                                for a cyclic process

5.1  Heat Engines and Refrigerators

Heat Engine: A machine which reverses net heat (+) form the surroundings and does

                      net work (+) on the surroundings (usually in a cyclic process)

Q = W   

Questions:  1. Which direction?

                    2. Can any cycle really happen?

Second Law:  Processes proceed in a certain direction only

Working fluid:  The substance to or from which heat is transfered

Observation:  Heat always flows from a high temperature to a low temperature region
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The most important heat engine operating on a cycle is the steam power plant.
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Is it possible?
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Refrigerator: It is the same machine as the heat engine, except that it receives work

                     (-) from the surroundings and transfers (pumps) heat from from a low

                      temperature zone to a high temperature zone. The objective is to cool

                      the low temperature zone.

Heat Pump: Same as the refrigerator. The objective is to heat the high temperature

                    zone.

Define:  Thermal Resevoir: It is a zone wehere heat can be transfered indefinitely

              wihout temperature change 
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Define:  Coefficient of Performance (COP):
Useful output

 =  
Input energy



L L

H L H L

Q Q 1
 =  =  = 

W Q  - Q  Q Q  - 1 


 

    Refrigerator:

Heat Pump:
H H

H L L H

Q Q 1
 =  =  = 

W Q  - Q  1 - Q Q  


 

    

Question:  Can ve have                                    so that              ?H LQ  = Q   or   W = 0    = 0
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5.2  The Second Law

There are several ways in which the second law of thermodynamics can be stated. 

Listed below are three that are often encountered. Altough the three may not 

appear to have much connection with each other, they are equivalent.

This is not possible

Kelvin-Planck statement:

No process is possible 

whose sole result is the 

absorption of heat from a 

reservoir and the conversion 

of this heat into work. 
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William Thomson (Lord Kelvin) 

British Mathematician

1824 - 1907
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Max Karl Ernst Ludwig Planck 

German Physicist

1858 - 1947
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Clausius statement:

No process is possible 

whose sole result is the 

transfer of heat from a cooler 

to a hotter body.

T1 > T2 
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Rudolf Julius Emanuel Clausius 

German Physicist

1822 - 1888
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These two statements answer our two previous questions. 

Three observations:

1. Both are negative statements. So, it is impossible to prove them except 

experientally.

2. These two statements are equivalent

3. It is impossible to construct a perpetual motion machine of the second kind. (The 

first one violates the first law – create work from nothing)

First law:                           for a cyclic process

Questions:  1. Which direction?

                    2. Can any cycle really happen?

Second Law:  Processes proceed in a certain direction only

Q = W   
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5.3  Reversible Process

Definition: A reversible process for a system is defined as a process in which, once 

has taken place, can be reversed, and in doing so, leave no change in 

either the system or the surroundings.

Note that quasi-equilibrium process is a reversible process.

Factors that render a process reversible:

1. Friction

2. Unstrained expansion (remove a membrane)

3. Heat transfer through a finite temperature difference

4. Mixing two different substances

5. Others
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5.4  Carnot Cycle
Question: In a heat engine (Rankine cycle 

shown in the Figure), how high the efficiency 

η can be if not 100 % (or β, coefficient of 

performance, for a refrigeration cycle)?

Sadi Carnot (a French scientist and an army 

officer) stated the 2nd law in 1824.

Heat always flows spontaneously from hotter 

to colder regions of matter (or 'downhill' in 

terms of the temperature gradient). Another 

statement is: "Not all heat can be converted 

into work in a cyclic process."
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Nicolas Léonard Sadi Carnot

French Physicist

1796 - 1832
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All the processes shown in the Figure (heat 

engine) are assumed to be reversible.

Boiler: Fluid boils or evaporates

           Isothermal (constant T) process

Turbine: Adiabatic Process  ; Q = 0

Condensor : Isothermal (constant T) process

Pump: Adiabatic Process  ; Q = 0

Then:
L L

H H

Q T
 = 1 -  = 1 - 

Q TC

This (Carnot efficiency) is the maximum possible efficiency of a heat engine 

under ideal (reversible) conditions
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Example

TH = 1000 K

TL = 400 K

HQ  = 325 kJ

LQ  = 125 kJ

W = 200 kJ

H LW = Q  - Q  = 325 - 125 = 200 kJ

First law says check

L
C

H

T 400
 = 1 -  = 1 -  = 0.75 

T 1000


max C HW  =  Q  = (0.75) (325) = 195 kJ 

W = 200 kJ is impossible

Second law says impossible
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5.5  Entropy

Rudolph Clasius was a German physicist and mathematician and is considered one 

of the central founding fathers of the science of thermodynamics. By his restatement 

of Sadi Carnot's principle known as the Carnot cycle, he gave the theory of heat a 

truer and sounder basis.

In 1865, he introduced the concept of entropy.

His most important paper, "On the Moving Force of Heat", published in 1850, first 

stated the basic ideas of the second law of thermodynamics

He defined it as the quotient of an infinitesimal amount of heat to the instantaneous t

emperature. He initially described it as transformation-content, in 

German Verwandlungsinhalt, and later coined the term entropy from a Greek word 

for transformation..

https://en.wikipedia.org/wiki/Heat
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Temperature
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Entropy is a scientific concept, most commonly associated with states of disorder, 

randomness, or uncertainty. 

The term and the concept are used in diverse fields, from classical thermodynamics, 

where it was first recognized, to the microscopic description of nature in statistical 

physics, and to the principles of information theory. 

It has found far-ranging applications in chemistry and physics, in biological systems 

and their relation to life, in cosmology, economics, sociology, weather 

science, climate change and information systems including the transmission of 

information in telecommunication.
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Clasius inequality:
Q

  0
T


 For the proof, consider a Carnot cycle:

max H L LW  = Q  - Q   ,   Q  0    

H LW  Q  - Q 
Q = W   First Law     

H LQ  Q  - Q 

H LQ  - Q  > 0 

Q  0 Therefore:

Also
H L L L

H L H H

Q Q Q TQ
 =  -  = 0    since   =   for a Carnot cycle

T T T Q T




Q
 = 0    for a reversible (Carnot) cycle

T


Therefore:
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Consider an irreversible (real) cycle:

(irrev)

L, irrev L,rev irrev revQ  > Q    since   <  

H L

H L

Q QQ
 =  -  < 0    for an irreversible cycle

T T T




Q
 < 0    for an irreversible cycle

T




One can also prove that the same is true for refrigeration cycles. 

Q
 

T


The quantity                is given the special name of «entropy»

Q
 = dS   only if the process is reversible, independent of the path

T



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Clasius inequality:
Q

  0
T




Q
Reversible cycle:    = 0

T




Q
Irreversible cycle:    < 0

T




Q
Impossible cycle:    > 0

T




2

2 1

1

Q
Reversible process:    = dS

T

Q
                                     = S  - S

T






2

2 1

1

Q
Irreversible process:     dS

T

Q
                                       S  - S

T









Entropy (S, in kJ/K)  is a measure of orderliness in the system.

                     It is a property of a system independent of the path of a  process.
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Example
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2 4
3 41 2

Boiler Cond. H L H L1 3

QQQ Q Q 1 1
 =  +  =  Q +  Q =  + 

T T T T T T T

       
   
       

Find the enthalpies at states 1, 2, 3, and 4 using the steam table.

   1 2 2 1 3 4 4 3Q  = m h  - h      and      Q  = m h  - h

At P1 = P2 = 0.7 MPa

Saturated vapor

T2 = TH = 164.97 °C

2 1h  - h  = 2066.3 kJ/kg
1 2Q  = 2066.3 m kJ

At P3 = P4 = 15 kPa

Saturated liquid

T4 = TL = 53.97 °C

4 3h  - h  = - 1898.4 kJ/kg
3 4Q  = - 1898.4 m kJ
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3 41 2

H L

QQQ 2066.3 m - 1898.4 m
 =  +  =  +  = - 1.087 m

T T T (164.97 + 273) (53.97 + 273)




Q
  0     indicates that it is not a Carnot cycle.

T




Q
 < 0     indicates that the second law is obeyed.

T




This example shows that for a cyclic irreversible (real) process
Q

 < 0
T




For a irreversible (real) process
Q

 < dS
T


Clasius inequality

In the previous example problem, either the process 2 to 3 or 3 to 4 or both are 

irreversible (due to friction, probably).
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Entropy, S, in  kJ/K, is an extensive property.

Specific entropy, s = S / m, in  kJ/kg.K, is an intensive property.

In the two-phase region: f gs = (1 - x) s  + x s

f fgs = s  + x s

g fgs = s  - (1 - x) s

Similar to v, h, and u

See the thermodynamic (steam) tables for specific entropy. 
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Example

An inventor reports that he has a refrigeration compressor thet receives saturated 

Freon-12 vapor at -15 °C (sg = 0.7046 kJ/kg.K) and delivers the vapor at 1 MPa and 

50 °C. The compression process is adiabatic. Evaluate the report.

Solution

Adiabatic means  Q = 0 Therefore, s2 - s1 = 0  if the process is reversible (ideal)

                  s2 > s1  if the process is irreversible (real)

Properties of Freon-12:  s1 = sg = 0.7046 kJ/kg.K

                                       s2 = 0.7021 kJ/kg.K

s2 < s1  Impossible 

Reject the report
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Carnot cycle on a T-s diagram

1 – 2   Reversible, isothermal

 1 2 H H 2 1Q  = Q  = T  S  - S

3 – 4   Reversible, isothermal

 3 4 L L 3 4Q  = Q  = T  S  - S

2 – 3   Reversible, adiabatic

2 3Q  = 0   ,    S = 0

4 – 1   Reversible, adiabatic

4 1Q  = 0   ,    S = 0

Corollary: Reversible, adiabatic processes are isentropic.

W

   
max H L

H 2 1 L 4 3

W = W  = Q  - Q  

     = T  S  - S  + T  S  - S
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There are two difficulties with this cycle. We’ll come to that.

First law: Q = dU + W 

First law for a reversible process: T ds = dU + P dV

For a reversible process: Q = T ds     and     W = P dV 

H = U + P V

dH = dU + P dV + V dP
T ds = dH - V dP

For a reversible 
process: 
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5.6  Entropy Change for an Ideal Gas

Ideal gas law: P V = m R T   or    P v = R T

Reversible process:
Q

 = T ds = du + P dv
m



vdu = c  dT

pdh = c  dT
For the definitions of cv and cp, see the previous problem

pv
cc R R

ds =  dT +  dv =  dT -  dP 
T v T P

Q/m du P du R
 = ds =  +  dv =  +  dv

T T T T v



Integrate
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2 2 2 2 2
pv

1 1 1 1 1

cc R R
ds =  dT +  dv =  dT -  dP 

T v T P    

2
v 2

2 1
11

c v
s  - s  =  dT + R ln

T v

 
 
 


2

p 2
2 1

11

c P
s  - s  =  dT - R ln

T P

 
 
 



When cv and cp are constants:

2 2
2 1 v

1 1

T v
s  - s  = c  ln  + R ln

T v

   
   
   

2 2
2 1 p

1 1

T P
s  - s  = c  ln  - R ln

T P

   
   
   

Compare these relations with those given in the textbook.
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For an isothermal and reversible process (T2 = T1 = T):

2 2
1 2

1 1

v P
W  = m R T ln  = m R T ln

v P

   
   
   

2 2 2
2

1 2 1 1
11 1 1

v
Q  = T ds =  dU +  P dV = P  V  ln

v

 
 
 

  

2
1 2

1

v
Q  = m R T ln

v

 
 
 
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T – s diagram for water
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