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4.  PROPERTIES of a pure substance

Pure substance has a homogeneous, non-varying chemical composition in all 

phases, for instance, ice,water, and steam.

Sometimes, a mixture of gases, such as air, is considered as a pure substance as 

long as there is no change of phase.

Simple compressible substance is a pure substance free of surface, magnetic, 

electrical, etc. effects.

4.1  Vapor-Liquid-Solid Phase Equilibrium in a Pure Substance

Let’s do the following experiment in a closed piston-cylinder system that has a pure 

substance (water), adding heat and observing changes in the phases and the 

properties:
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P = 0.1 MPa

T = 20 °C

Add Heat P = 0.1 MPa   constant

T increases until 99.6 °C

v increases very slightly 

P = 0.1 MPa constant

T = 99.6 °C  constant

Change of phase occurs

v increases

Keep adding heat

P = 0.1 MPa constant

T > 99.6 °C

Add Heat

P = constant

T increases 

v increases
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Saturation Temperature:  Vaporization takes place at a given pressure

Saturation Pressure:  The same at a given temperature at which vaporization occurs

Saturated Liquid or Vapor:  at Tsat and Psat

Compressed (or subcooled) Liquid:  for a given pressure P,  T < Tsat 

                                                                                      or for a given temperature T,  P > Psat  

Saturated State:  at Tsat and Psat

Supereated Vapor:  for a given P,  T > Tsat

Quality, x:  an intensive property (independent of mass)
Mass of vapor

x = 
Total mass

Critical Point:  Pcr, Tcr Examine a T-v diagram of water
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22.09 MPa for water

40 MPa for water.  Is it liquid or vapor?

0.1 MPa for water

10 MPa for water
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Consider another experiment:

1 kg Ice

T < - 20 °C

P = 100 kPa

Add heat

P = constant

T increases until 0 °C

v increases slightly

Ice melts at

P = 100 kPa and T = 0 °C

v decreases slightly

The reverse is true for 

most othe substances

1 kg Ice

T < - 10 °C

P = 0.26 kPa

Add heat

P = constant

T increases until - 10 °C

v increases slightly

Ice sublimes 

(becomes vapor directly  at

P = 0.26 kPa and T = - 10 °C

v stays constant
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water Most others
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Example

Saturated liquid of a pure substance is heated at constant volume until the pressure 

is Pcrit. Then, it is expanded at constant temperature back to its initial pressure. Show 

the processes on P-v, T-v, and P-T diagrams.
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Note that P, T, and v are intensive properties. So are u and h. (not U and H)
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4.2  Enthalpy as a Property

P = 0 kPa  corresponds to vacuum (absolute zero pressure)

T = 0 °C = 273 K  corresponds to saturation temperature of liquid water at 100 kPA

T = 0 K  is the absolute zero temperature (of the vacuum)

V = 0 m3  or  v = 0 m3/kg   obvious

What about  u  or  h = u + P v?

The accepted «zero» for  u  and  h  depends on the substance (pure). 

For example:  u = 0  for water at  T = 0.01 °C and saturated liquid

                       u = 0  for freon at T = - 40 °C and satırated liquid

So, we may have negative values for  u  and  h.
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4.3  Properties of a Wet Mixture

Subscript f : saturated liquid

Subscript g : saturated vapor

Subscript fg : difference, f - g

v = x vg + (1 – x) vf

v = x vf + x vfg

v = vg - (1 – x) vfg

u = x ug + (1 – x) uf

u = x uf + x ufg

u = ug - (1 – x) ufg

uf = hf + P vf

ug = hg + P vg

ufg = ug - uf

h = x hg + (1 – x) hf

h = h vf + x hfg

h = hg - (1 – x) hfg

hfg = hg - hf

hfg = Latent heat (of vaporization)

Mass of vapor
x = quality = dryness fraction = 

Total mass
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4.4  Properties of a Compressed (Subcooled) Liquid

Except at very high pressures, the properties vary only slightly with pressure. So we 

may use the properties of saturated liquid at the same temperature as the properties 

(u, h, v) of the compressed liquid.

Or, alternatively, to be more accurate, one may use thermodynamic tables.

4.5  Properties of a Superheated Vapor

An approximate formula: 
0.233 (h in kJ/kg - 1943)

v  
100 P in bars



To be more accurate, use thermodynamic tables.
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4.6  Independent Properties and State

Two independent properties determine the state of a pure substance.

P and T are NOT independent in the two-phase (saturation) region.

Example

A cylinder fitted with a piston has a volume of 0.1 m3 and contains 0.5 

kg of water at 0.4. MPa. Heat is transferred to the steam until the 

temperature is 300 ⁰C. Determine 1Q2 and 1W2. 

Constant-pressure process  =>  P1 = P2 = 0.4 MPa

Given :    m = 0.5 kg       V1 = 0.1 m3  

2 2

1 2 1

1 1

2 1

W  = P dV = P  dV

        = P m v  - v

 
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2
1

 
1 2 1 2 2 1

1 2 2 1

Q  = W  + U  - U  

       = W  + m u  - u

31
1

V 0.1
v  =  =  = 0.2 m /kg

m 0.5

1 f1 fgv  = v  + x v

At P = 0.4 MPa two-phase region: 
3

fv  = 0.001084 m /kg

3
fgv  = 0.4614 m /kg

1 f

fg

v  - v 0.2 - 0.001084
x =  =  = 0.4311     43.11 % quality

v 0.4614
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1 f fgh  = h  + x h At P = 0.4 MPa 

two-phase region 

fh  = 604.74 kJ/kg

fgh  = 2133.8 kJ/kg

1h  = 604.74 + (0.4311) (2133.8) = 1524.6 kJ/kg

At P = 0.4 MPa  and  T2 = 300 °C   =>   h2 = 3066.8 kJ/kg

   1 2 2 1W  = m P v  - v  = (0.5) (400) 0.6548 - 0.2  = 91 kJ

       1 2 2 1 2 1 2 1Q  = m u  - u  + m P v  - v  = m h  - h  = (0.5) 3066.8 - 1524.6  

       = 771.1 kJ

We may also determine u1 and u2 and then find 1Q2.

At P = 0.4 MPa 

saturation

fu  = 604.31 kJ/kg

fgu  = 1949.3 kJ/kg

1 f fgu  = u  + x u

1u  = 604.31 + (0.4311) (1949.3) 

    = 1444.6 kJ/kg
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At P = 0.4 MPa 

T2 = 300 °C

2u  = 2804.8 kJ/kg

 1 2Q  = (0.5) 2804.8 - 1444.5  + 91 = 771.1 kJ

4.7  Thermodynamic Tables

See the following Tables in the Appendices:

 Saturated steam temperature table

 Saturated steam pressure table

 Superheated vapor table

 Compressed liquid table

 Saturated-solid –vapor table (not much used)

Find the properties of the previous example problem using the Tables.
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Example

m = 1kg saturated liquid water

Ap = 0.065 m2    Patm = 94 kPa    g = 9.75 m/s2

Initial state:  T1 = 32 °C   V1 = 0.1 m3

Add Q until 

all saturated vapor

a) Find the temperature, T2, as the piston first rises from the pins

b) Work done by the water
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Choose the sytem as water only, and assume that the process is at semi-equilibrium.

First, find the pressure when the piston just starts moving: 2 pist atmP  = P  + P

atmP  = 94 kPa

pist

(40) (9.75)
P  =  = 6000 Pa = 6 kPa

0.065

2P  = 6 + 94 = 100 kPa

(a) 1T  = 32 C

31
1

V 0.1
v  =  =  = 0.1 m /kg

m 1

Pressure is not given directly in the Table. 

Interpolation is necessary.

Tsat,1 = 30 °C

Tsat,2 = 35 °C
ΔT = 5 °C

Psat,1 = 4.246 kPa

Psat,2 = 5.628 kPa
ΔP = 1.382 kPa

For  T1 = 32 °C  sat,2 sat,1
1 sat,1 1 sat,1

sat,2 sat,1

P  - P
P  = P  +  T  - T

T  - T
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For  T1 = 32 °C  1

1.382
P  = 4.246 +  32 - 30  = 4.8 kPa

5

Let’s find the quality at state 1 , again using interpolation in the Table:

Tsat,1 = 30 °C   →   vf = 0.001004 m3/kg

Tsat,2 = 35 °C   →   vf = 0.001006 m3/kg
At T = 32 °C 

  3
f

0.001006 - 0.001004
v  = 0.001004 +  32 - 30  = 0.0010048 m /kg

35 - 30

Tsat,1 = 30 °C   →   vg = 32.89 m3/kg

Tsat,2 = 35 °C   →   vf = 25.22 m3/kg
At T = 32 °C 

  3
g

25.22 - 32.89
v  = 32.89 +  32 - 30  = 29.822 m /kg

35 - 30

3
fgv  = 29.822 - 0.0010048 = 29.820955 m /kg
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The quality or dryness 

fraction at State 1:

1 f
1

fg

v  - v 0.1 - 0.0010048
x  =  =  = 0.0033196    =>    0.33 %

v 29.820955

Add heat, at constant volume, until P2 = 100 kPa,   v2 = v1 = vg = 0.1 m3/kg 

At P2 = 100 kPa,  T2 = 99.63 °C,  vf = 0.001043 m3/kg,  vg = 1.6940 m3/kg 

Since v2 < vg, we are still in the two-phase region. 

The quality or dryness 

fraction at State 2:

2 f
2

fg

v  - v 0.1 - 0.0010043
x  =  =  = 0.05845    =>    5.8 %

v 1.6440 - 0.001043

(b) Add more heat, at constant pressure, until all saturated vapor (steam)

State 3:  P3 = 100 kPa,  T3 = 99.63 °C,  v3 = vg = 1.694 m3/kg 

   
3

1 3 2 3 3 2
2

W  = W  = P dV = P V  - V  = (100) 1.694 - 0.1  = 159.4 kJ
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4.8  Perfect (Ideal) Gases

Boyle’s Law  or  Boyle-Mariotte Law:

The absolute pressure exerted by a given mass of an ideal gas is inversely 

proportional to the volume it occupies if the temperature and amount of gas remain 

unchanged within a closed system

Charles’ Law:

When the pressure on a sample of a dry gas is held constant, the 

Kelvin temperature and the volume will be in direct proportion

1
If T is constant       P     or   P V = constant

V
 

V
If P is constant       V  T   or    = constant     T is in Kelvins

T
 
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Robert Boyle FRS

Anglo-Irish Chemist

1627 - 1691
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Jacques Charles

French Scientist

1746 - 1823
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Combine the two laws:
P V

 = constant
T

Include mass. m:
P V

 = constant = R
m T

R is called the gas constant

Any gas with a state away from saturation and critical point that behaves close 

enough to this law is called a perfect (ideal) gas.

P V = m R T    ,    T is in Kelvins

For air, R = 0.287 kJ/kg.K. The 

gas constants for other gases are 

given in Tables.

Note that steam is NOT a perfect gas.
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Define molecular weight of a gas
Mass of the gas molecule

= (12) 
Mass of C-12 atom

 
 
 

Molecular weight of C-12 atom is exactly 12  (no units)

Molecular weight of O2 molecule is approximately 32

Molecular weight of CO2 molecule is approximately 44

Molecular weight of Air molecule is approximately 28.97

See the Thermodynamic tables for the others

Define  kg-mol  or kmol: It is the quantity of a gas whose mass is numerically 

equal to its molecular weight in kilograms.

O2  =>  32  kg / kmol

Air  =>  28.97  kg / kmol
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Avagadro’s Law: The total number of atoms (molecules) of a gas (i.e., the amount of 

gaseous substance) is directly proportional to the volume occupied by the gas at 

constant temperature and pressure.

Another statement of the Avagadro’s Law: Equal volumes of different gasses at the 

same state (P and T) contain the same number of molecules (or moles), or vice 

versa.

This number is called the Avagadro’s number = NA = 6.02214076 1023

If M is the molecular weight of a gas, the mass (in kg’s) of the gas has n number of 

kmol’s.
M (molecular weight)

n (number of kmol's) = 
m (mass in kg)
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Lorenzo Romano Amedeo Carlo Avogadro

Count of Quaregna and Cerreto

Italian Chemist

1776 - 1826
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Ideal gas law:  
P V P V / M P V / M P V / M

 = R      =>      =  
m T m T / M m / M  T n T



P V
 = M R = Constant for all perfect (ideal) gasses

n T
                      Universal gas constant

0

P V
 = M R = R  = 8.3143 kJ/kmol.K

n T

P V = m R T
0P V = n R  T

kPa m3 kg kJ/kg.K kPa m3 kmol kJ/kmol.KK K
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Example Room: 6 m x 4 m x 10 m P = 100 kPa,  T = 25 °C

Find the mass of the air in the room.

P V (100) (6) (4) (10)
m =  =   280 kg

R T (0.287) (25 + 273)


Example
Piston area = 0.2 m2

Initial state:  P1 = 200 kPa      T1 = 500 °C = 773 K

(a)  Air is cooled until the stops (Pressure remains constant)

         Find  T2,  1Q2,  1W2

(b)  Air is cooled until T3 = 20 °C (Volume remains constant) 

         Find  2Q3,  P3

State 1
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Intial volume:  V1 = (2) (0.2) = 0.4 m3

Volume at State 2:  V2 = (1) (0.2) = 0.2 m3

Constant pressure process:  P2 = P1 = 200 kPa

1 1 1P  V  = m R T

2 2 2P  V  = m R T
1 1 1

2 1
2 2 2

V T V 0.2
 =       T  = T   = 773  = 386.6 K = 113.4 C

V T V 0.4
 

(a)  Constant pressure process

2

1 2 1 2 1
1

W  = P dV = P  (V  - V ) = (200) (0.2 - 0.4) = - 40 kJ
Work is done on the system

First Law: 1 2 2 1 1 2Q  = m (u  - u ) + W

1 1

1

P  V (200) (0.4)
m =  =  = 0.3606 kg of air

R T (0.287) (773)

2 1u  - u  = ?
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2 1u  - u  = ? Two methods:
Use the air table

Use the definition of heat capacity

Use the air table

For an ideal gas, u = f(T), i.e, internal energy is a function of temperature only.

This can be proved, experimentally.

At T1 = 773 K       =>    h1 = 792.379 kJ/kg

At T2 = 386.6 K    =>    h2 = 387.443 kJ/kg
from air table

1 2 2 1 1 2 2 1 2 1Q  = m (u  - u ) + W  = m (u  - u ) + P m (v  - v )

   1 2 2 2 1 1 2 1Q  = m P v  + u  - P v  + u  = m h  - h  

   1 2 2 1Q  = m h  - h  = (0.3606) 387.443 - 792.379  = - 146 kJ 

Heat flows out of the system
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Use the definition of heat capacity

Definition of specific heat capacity:

Amount of heat (thermal energy) required to raise the temperature of a unit mass of 

a substance through 1 degree under specified conditions.

Distinguish two conditions:
Constant pressure process    =>   cp

Constant volume process      =>    cv

1 2 p 2 1 2 1 p 2 1 2 1Q  = m c  (T  - T ) = m (h  - h )         c  (T  - T ) = h  - h

If cp remains constant during the process

1 2 p 2 1Q  = m c  (T  - T ) = (1.0035) (386.6 - 773) = - 139.82 kJ

From air table in kJ/kg.K
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Use the air table:

Use the definition of heat capacity: 1 2Q  = - 139.82 kJ

1 2Q  = - 146 kJ 

The result using the air table must be more accurate. The reason why there is a 

discrepency is that cp is not quite constant and changes with temperature.

p p pP = constant:    c  dT = dh           c  T = h    if  c  is assumed to be constant   

v v vV = constant:    c  dT = du           c  T = u    if  c  is assumed to be constant   

For a given gas,  R = cp – cv.  See the textbook for the proof.

For an isentropic process (reversible and adiabatic):  
p

v

c
 = k

c

Isentropic index of expansion
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(b)  Constant volume process:  V2 = V3 = 0.2 m3   and  

                             T2 = 386.6 K

P2 V2 = m R T2

P3 V3 = m R T3

32 2
3 2

3 3 2

TP T 293
 =          P  = P   = 200  = 151.6 kPa

P T T 386.6


 2 3 3 2 2 3Q  = m u  - u  + W        
 

2 3 2 3 3 2

2 3 v 3 2

W  = 0         Q  = m u  - u

                           Q  = m c  T  - T  



   2 3 v 3 2Q  = m c  T  - T  = (0.7165) (0.3606) 293 - 386.6  = - 24.2 kJ

Heat flows out of the system

Using Table A-10:    2 3 3 2Q  = m u  - u  = (0.7165) 209.071 - 276.5  = - 24.3 kJ 
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 
 

2 3 3 2

2 3 v 3 2

Q  = m u  - u  = - 24.3 kJ

Q  = m c  T  - T  = - 24.2 kJ 

The difference is due to the fact that cv is 

assumed to remain constant during the 

constant-volume process

Actually: v v vc  dT = du          c  T = u   iff c  is constant   

For the variation of cv and cp with temperature, see the Appendix 8 for real gasses. 

The air table is derived using these equations.
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4.8.1  Polytropic Process in an Ideal Gas (reversible)

General Relation: P V = m R T

P V = n R0 T

R: Gas constant = cp - cv

R0: Universal gas constant = 8.3143 kJ/kmol.K

Constant volume process:

Constant pressure process:

vc  dT = du =  Q  

pc  dT = dh = Q  

Define n : Index of expansion or compression

For a process where both P and V are changing:

(Polytropic  Reversible Process)

nP V  = Constant
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During such a polytropic reversible process in an ideal gas with n:

1 1 2 2
1 2

P  V  - P  V
W  = 

n - 1 This we proved before.

 1 2
1 2

m R T  - T
W  = 

n - 1
Since  P V = m R T

  p v
1 2 1 2

c  - n c
Q  = m R T  - T  

n - 1

 
 
 

n

n-1
2 2

1 1

P T
 = 

P T

 
 
 

See the text book for the proofs.
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4.8.2  Adiabatic Process in an Ideal Gas (reversible)

An adiabatic process is a type of thermodynamic process that occurs without 

transferring heat between the thermodynamic system and its environment.
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  p v p
1 2 1 2 p v

v

c  - n c c
Q  = 0 = m T  - T        c  - n c  = 0      n = 

n - 1 c

 
  

 

n is called isentropic index of expansion

True only if reversible and adiabatic
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