(.) ME - 351 THERMODYNAMICS OF HEAT POWER

3. PROCESSES

- Non-flow Process: In a closed system (such as a piston-cylinder device)

W and Q are transferred, but not mass

- Flow Process: Open system (such as a turbine) 1' - Steady state

There are W, Q, and mass flow - Unsteady state

3.1 Steady-State Steady-Flow Processes

- Properties of the flowing fluid are constant with respect to time

- Fluid flow rate is constant with respect to time
- Heat and work flow rates are constant with respect to time

- The control volume does not move relative to the coordinate frame of reference.

i.e., there is no work due to acceleration of the control volume.
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These are applicable to long-term steady operation of devices such as turbines

compressors, nozzles, boilers, condensers, etc.

We need to write the first law of thermodynamics as a rate equation, although “time”
is not quite a relevant parameter in thermodynamics. We will assume that “rate” is

constant, i.e, the mass, heat, and work flow rates are constant.

oQ _dU , oW _ d(KE) , d(PE) .
: . = + + + in Watts
First law as a rate equation: dt dt dt dt
% =Q and AL W all constants
Define: | - a=we+ E
du _ d(KE) , d(PE) _ dE dt
] dt dt dt dt !

Change 1n total energy
wrt time
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dE N . , . :
e =0 = Q=W Thisis true there is no change in the system properties.

However, this is not the equation for a flow system. There is mass flowing in and out

of the control volume. Energy change occurs due to this mass flow.

B
o &3 dm tant f te i
I . _ am _ . constant mass flow rate in
E | Define: 5 m
M e R volume and out of the control volume
< T W
m U, Internal energy of the fluid moving in per unit time
Sne leilpe M3z Ppotential energy of the fluid moving in per unit time
into the sytem o2
S 1
at boundary (1) i o Kinetic energy of the fluid moving in per unit time
J mv, P Flow work
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Flow work mv, P, (k:gj (r:—;) (%) N m_J W

m u, Internal energy of the fluid moving out per unit time
Energy  flowing M2, Ppotential energy of the fluid moving out per unit time
out of the sytem o2
g 2
at boundary (2) m o Kinetic energy of the fluid moving out per unit time

J mv, P, Flow work

2 2
Q+rh(u1+gz1+%1+v1 P1j=rh [u2+gzz+%2+v2 P2j+W

The combination, u + v P, (internal energy + flow work), occurs frequently.
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Define: U+ PV=h gpecific enthalpy (per unit mass)

2

2
Q+m(h1+gz1+%)=m[h2+gzz+%2j+w

. ] . 2 - 2 o
First law equation Q=m {(h2 -h) +g (z,-2,) + C, 201 } + W
for an open system. \ Y I
often neglected sometimes neglected

Devices: Heat Exchangers, Boilers, Condensers, Nozzles, Turbines

Compressors, Throttling Valves
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Heat Exchanger: It is a system that transfers heat (thermal energy) from one

medium (fluid) to another usually without contact.
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Typical schematic diagrams of heat exchangers:

O
s
tluid T S thud
—— ——
m oy ] 7 M
N
Control surface
IN Primary Fluid A Control volume
& """""""""""""""""""""""" Q=0
i Outer Tube
nzf e _
& = "o
out | =p [ =
---------------------- Feonmcnvsenm s my (hZ,A h1,A) = Mg (hZ,B h1,B)

Inner Heat Tube
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Example: N, gas is heated in a heat exchanger.

At1- T.=35°C P, =550kPa  h, =35Jkg

m=y =M at2: T,=1000°C P, =500kPa  h, = 1040 J/kg
10— 2 _
Q Find Q per unit mass flow rate, in kJ/kg

z,-2z,=0 No change in the potential energy

c,-c, =0 No change in the kinetic energy
W =0  No work is done (except the flow work)
Q

Q=m (h,-h,) = = =1000kJ/kgofN,
m
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Boiler: It is an apparatus designed to convert liquid to vapor.

T

——1p- Stean Schematic diagram of a boiler:

Cylinder
«—— Steam out

- 2

.._](;.'
|

_ Brickwork
Fire grate

9

Cylinder

Q=m (h, -h,)

Feedwater
f Note that z, — z, may not be negligible for a large boiler.

Prof. Dr. Faruk Aring Fall 1995



(D) ME - 351 THERMODYNAMICS OF HEAT POWER

Example:

A boiler uses coal at a rate of 3000 kg/h in producing steam with a specific enthalpy
of 2700 kJ/kg from feed water with a specific enthalpy of 280 kJ/kg. The heating
value of coal is 28000 kJ/kg, of which 80 % is useful in producing steam. Find the

rate of steam production.

Q= (3000 kg/h) (28000 kJ/kg) (0.80) =67 200 000 kJ/h

Q=m (h,-h) or m= Q _ 67200000 _ 72686 kg steam/h
h,-h, 2700 - 280
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Condenser: It is an apparatus designed to convert vapor to liquid.

Sieamin Schematic diagram of a condenser:

m, hy; KE;
|
My, hyy my, hyo
e e S ——
|
Candensate out
(liquid farm) m, hy KE;
i f te of Ceq - Co
mass ow frate O . s,1 s,2 B
mg hs,1 - hsz N 2 = m, (hwz - hw1)

steam is not neglected:
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Nozzles and Diffusers

Assume that the flow is

I lﬂ incompressible, i.e., p (or v)
c, c; does not change.
I’: § Also, ™ =A p c = constant
1 2 / \ '\
Convergent cross-sectional  density speed
Subsonic
arca
2

: Ac m*) (m/s : .
m=Apc=— = ( ) ( ) = kg/s  There is continuity of mass.

v m°/kg

A For incompressible flow, such as flow
m=A, pc,=A, pc, = | G2 = A—1 C; | ofaliquid (water), the velocity ratio is
2

inversely proportionak with area ratio
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For compressible flow, such as flow of a gas (air), density, p (or specific volume, v)

also changes.
Distinguish between compressible fluid and compressible flow.

Liquids are incompressible fluids (for all practical purposes) and they flow

incompressiby, i.e, density remains constant during flow.

Whereas, gases are compressible fluids, but they may flow incompressiby if the

density remains constant during the flow.

C; -G

Firstlawwhen Q=0,W=0,and AU=0: 0=h,-h, +

2 2

C,-C

2 1
0=PR,v,-P v, +
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If c, <<c, and v, =, c, =\/2 (P, -P,)v

2 incompressible flow
0=PR,v,-P, v, +

If c, << c, and C, = \/2 (h, - h,)
- compressible flow

High speed can be obtained, with pressre drop, at the expense of enthalpy.

o
N
HH\H Throat i
\M"‘h,___ | rr—/_,-f"
Here is another common type g
Ma <1 Ma =1 Ma >1
Converging-diverging nozzle ,x”"fff _“"H-HR__H
,-f“ff B
,_,-""_‘
~ Subsonic Supersonic

4 >4 P
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Converging nozzle

C, < speed of sound in the fluid (gas)
If we keep on decreasing A,, what happens?

There comes a turn around point where the

flow will be choked, i.e., further decrease of the

area does not give us further increase in c,.

This (choking) occurs when c, = speed of sound.

Strangely enough, from this point on, if we increase the area, the pressure will
keep on decreasing and c, will keep on increasing. Then, we will have a
converging-diverging nozzle with speeds, c,, higher than the speed of sound

(Mach number more than 1), with the same formula:

. _Ac
c, =2 (h, -hy,) m=—=
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Example:

A nozzle is supplied with steam having a specific enthalpy of 270 kJ/kg, at a rate of
m = 9.1 kg/min. At the outlet, c, = 1070 m/s. Assume c, = 0 (negligible) and Q = 0
(adiabatic). Specific volume at the outlet v, = 18.7 m3/kg. Determine: (a) h, = ? at the
exit; (b) Outlet area A, =7

Converging Diverging C2

Section Section (a) Q - O = m (h2 _ h1) + m ?2

dA<0 dA>0
dv >0 dv >0

M<1 M>1 2
Reservoir hz N h1 - =
To = — Supersonic ————s  Vexit 2
po flow 2
Vo=0 T h, = 2780 - (1070) 1
2 1000 kJ/J
M=1 = 2208 kJ/kg

(b) A, = 2 = (9.1) ( L j (1875j ] 0.00266 m’
C, 60 s/min ) {1070
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)

Turbines

The term “turbine’ was taken from the Latin word "Turbo", which means to spin. A
turbine is one type of mechanical device, used to change the energy of steam,
flowing water, wind, and gas to mechanical energy (rotation or spin of a shaft). The

same shaft operates an electric generator.

Impulse Turbine Reaction Turbine

Mawmng }WFL_{"-— —
buckets O ———— Rotor |"
Fived >1f‘“~ o Rotating
nozre — nozzie
Mowang . [
. . [T T = ¥ il . T Riotateng
Types: Steam, Gas, Water, Wind uchots oy e noutle
- . 2 - w Tha
F'I'!'W - - * .
nozzde = o 7 e T "
P = o =
= g -.: R,
i et Stator ==
s RN o,
il — Wy
e —, -
= [ ==
- P""'_.-r'?'h__'_ = :h‘*\l. 3
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Steam Turbine
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Control volume
A

m

5 Schematic diagram of a steam or gas turbine
== AW
! W =m (h,-h,) |fvelocities are negligible

m
Example:

A steam turbine uses 3600 kg steam / h. At the inlet, steam velocity c, = 27.5 m/s
and h, = 3000 kJ / kg steam. The steam leaves the turbine with velocity c, = 182.5
m/s and h, = 2220 kj / kg steam. If the process is adiabatic (Q = 0), find the output of
the turbine.

2 2
Ci -G,
) If velocities are not negligible

V\/=rh(h1-h2)+rh[
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_ o2 _ 2
W=rh(h1-h2)+rh£1 2] i = 3600 kg /h = 1 kg/s

2 1000 J/kJ

W = (1) (3000 - 2220) + (1) ((27.5)2 - (182.5)2] ( 1 j

W =780-16.3 [ 764 kW

S—
negligible?
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Pump and Compressor

Moving hydraulic fluid through a system requires either a pump or compressor. Both
achieve this goal, but through different operating methods. Pumps have the ability to
move liquids or gases. Compressors typically only move gas due to its natural ability

to be compressed. Pumps and compressors both have very high pressure rises.

Pump Compressor

W =m (h, -h,) work input, so negative
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A compressor has rotors and diffusers. The rotors

m
% direct the gas onto the stationary diffusers at high

W — speed. The gas slows down the gas (opposite of

N nozzles), building pressure instead.
m

W=m (h, -h,)
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Throttling Valve

Throttling valves are used in many industrial processes where the fluid needs to be
lowered in pressure. The process is called throttling because when the fluid
expands in a higher pressure area, the energy used to increase the pressure is lost
as it decompresses into the lower pressure area.

They are basically regulating valves as the discs of the throttling valves can regulate

the ﬂOW, temparoh ira Ar nracciira nf tha flaw madinim naceinAa thraa 1gh |t

1.Fully Open 2.Throttling 3.Throttling 3.Fully Closed
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Throttling valve: h,=h,

u1+P1V1=u2+P2V2

All these devices (heat exchangers, turbine, pumps, etc.) are used in power

(electricity) generating power plants.
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Steom Generateor

Steam Feed Pump
+ § Reheaters Turbine ‘
Exfternat 1-{
Maisfure LA, o g -—
Separafor x
= Generator
[ —
Condenser
’ b e
Steam
Generaofor
Pressurized
VW ter 2eoctor
\'”'- Steam Generator
4 L Feed .'DUMF
i
E ANV
Reactor Coolant (< Artr—t N1 N1
Pump High Pressuré

Bleed Heafers Low Pressure Bleed Heolars
Ifnternal Meisture Seporator Receivers

Schematic diagram of a nuclear power plant
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Superheated
Steam =team F:er:eated
Dirum ‘;. 1 steam
UU Reheater
<" High pressure
(] turbine exhaust
[ =
- steam
w 3 Economizer
EBlowdown @ ]
e b Dezerated
] = il boiler feedwater
= Cao o
o L% b
o a2 = Flue gas
C = ™ >
2 E s N’
Coal (| e O
abh hir  Fan
Coal-air | ™ -*—'i_.'ﬂ Hot air Y preheater
Mmix Ly ] L0057 Ciat Amnbient
ol air
Pulverizer / <" header
Inlet }  yash |
header n Hot air

Flow path of air (hot gases) in a steam generating unit
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3.2 Non-flow Processes

First law of thermodynamics — Energy Balance:

3.2.1 Constant-volume Process

[

"i,vi"

Prof. Dr. Faruk Aring

Q= (U, -U,)

=m (u, - u,)

Q

Q= (U,-U,)+W

[I “~ Stoppers

Pressure
Cooker
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3.2.2 Constant-pressure Process

Py

Piston 13

Py
: ; Q=(U,-U,)+W _ free to move
| m,_
Q . Gas P=P + & J
4 E;D ________ ApEt
"i,*i"
Work done m.. g
W= P+ —=1 (AL) (L) _
by the system: [ ’ Aist ) '( " t) B (P) (Vz V1)

Vz_V1

Q=U,-U +W=U,-U +P (V,-V,)=U, +P, V, - (U, +P, V,)

=H, -H,=m (h, -h,)

Prof. Dr. Faruk Aring
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Example:

“ During a non-flow process, m = 0.5 kg of steam is cooled at
i’ constant pressure from V, = 0.3 m3 to V, = 0.028 m3. It is measured
_,,r,_ that Q = - 900 kd and W = - 81.6 kJ. Find P and Au (change in the

Y0 specific internal energy).

Q=(U,-U,) +W -900=(0.5)(u, -u,)-81.6

u, -u = 20*816 __ 1636.8 kiikg = Au

W - 81.6

= = 300 kPa
V, -V, 0.028-0.3

W=pP(V,-V,) = P=
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3.2.3 Adiabatic Process

Q=0 = 0=U,-U +W = W=U,-U,
3.2.4 Polytropic Process
P JFI P V" = constant
(2) T
I\ JR n: Index of expansion
____________ or compression
, =V Q /4 Constant for a given gas
2 2 n 2 n
Work = [P(V) dV = j—P1 Vi gy = j—PZ V: gv= ViR Vo
/ / y Vv n -1
P1 V1 B Pz Vz

Q=U,-U +W=U,-U, + 1
n -
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