

7. Chemical Reactions

Substance: Nucleus, orbiting electrons, atoms, molecules

Pure Substance: Chemical purity

Chemical Reaction: Re-arrangement of electrons and re-grouping of atoms to form new molecules

Burning: Type of chemical reaction, usually involving oxygen
Combination with oxygen

Combustion: Violent burning (usually of hydrocarbons)

Hydrocarbons: (chemical) molecules made up of basically C and H ; made in living plants

Combustion of Hydrocarbons: is important because they are the primary energy sources (nuclear and hydro not included)

7.1 Hydrocarbon Fuels

Coal, Gasoline, Diesel oil, Natural gas, Kerosene, others

Coal: Vegetation deposits of past geological ages

Made up of C, H₂, O₂, S, N₂, moisture, others

Coal analysis:

Ultimate analysis:

Gives percent of constituents
by mass of unburned coal

- As received basis
- Dry basis
- Ash-free basis

Or combination

Proximate analysis:

Gives percent (by mass) of volatile matter, fixed carbon, ash, and moisture
of unburned coal

Orsat analysis:

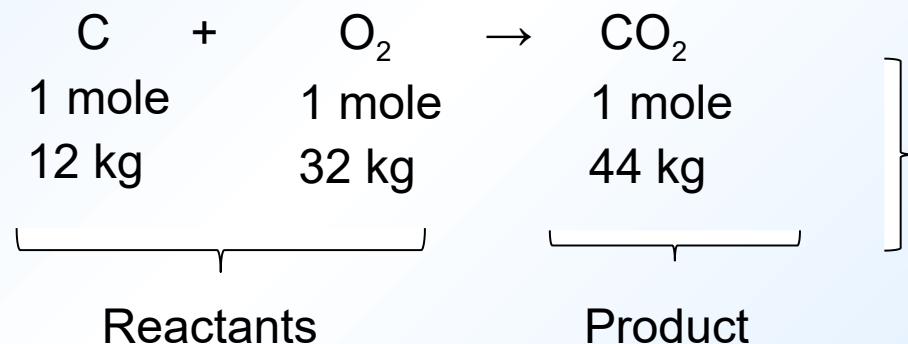
Gives percent (by volume) of CO, CO₂, and O₂ content
of product gases of combustion

Other Coal Properties: Grindability, Size, Fusibility of ash, others

Coal Classification - Anthracite (~ 80 % carbon)
- Bituminous (~ 60 % carbon)
- Lignite (~ 40 % carbon)

Crude oil: Distillation and cracking yields most liquid hydrocarbon fuels
all containing large number of various hydrocarbons
(Gasoline has 40 kinds, for instance)

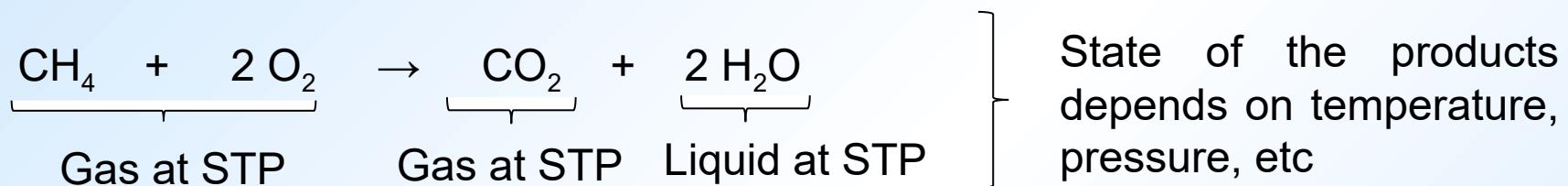
Gasoline: Mostly C₈H₁₈ - Octane


Diesel Oil: Mostly C₁₂H₂₆ – Dodecane (fuel oil)

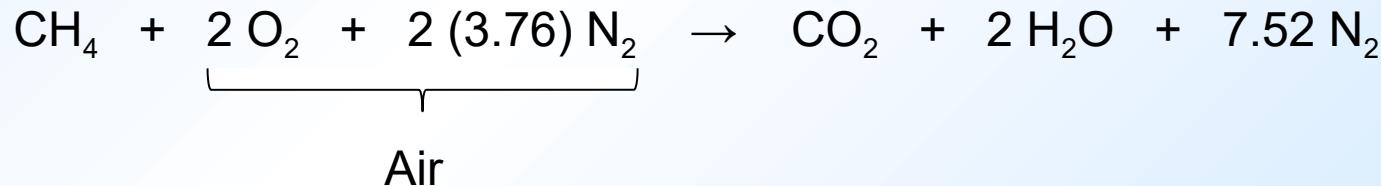
Gaseous Fuels: Natural gas – mostly CH_4 methane

(93 % CH₄, 3 % C₂H₆, 3 % N₂)

Gaseous Artificial Fuels: Coal gas, Producer gas, Blast furnace gas, etc.


7.2 Combustion Process

Note that 12, 32, and 44 are approximate molecular weights

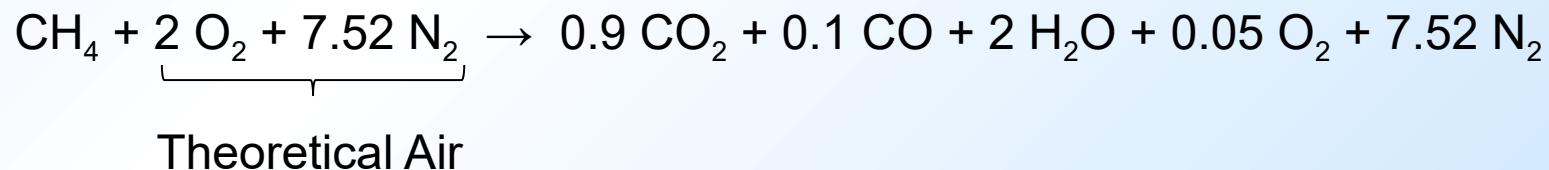

STP – Standard Temperature and Pressure – 0 °C and 100 kPa

Oxygen is supplied in Air: 21 % Oxygen and 79 % Nitrogen

molecular weight = 32 approximately

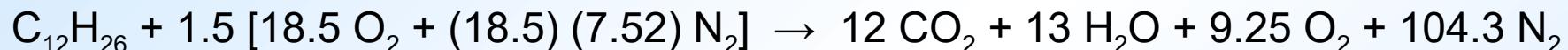
In the air, for each mole of Oxygen, there is $21/79 = 3.76$ moles of Nitrogen

Theoretical air: Minimum amount of air, on molal basis, necessary for complete combustion


Complete combustion: $C \rightarrow CO_2$ $S \rightarrow SO_2$ $H \rightarrow H_2O$

Assuming that Nitrogen is not burning (requires high pressure and high temperature)

Excess air: Amount of air, usually by mole, supplied in excess of theoretical air


Air-Fuel ratio =
$$\frac{\text{Mass of air}}{\text{Mass of Fuel}}$$
 sometimes on molal basis

Example: Incomplete combustion of methane with 10 % CO in the products (molal basis) and theoretical air.

Example: Fuel oil ($C_{12}H_{26}$) is burned with 50 % excess air (molal basis). Find the volumetric percent of the products

$$\text{Total moles of the products} = 12 + 13 + 9.25 + 104.3 = 138.55$$

$$CO_2 \quad \frac{12}{138.55} = 0.0866 \quad \Rightarrow \quad 8.66\% \text{ } CO_2 \text{ by mole (or volume)}$$

$$H_2O \quad \frac{13}{138.55} = 0.0938 \quad \Rightarrow \quad 9.38\% \text{ } H_2O$$

$$O_2 \quad \frac{9.25}{138.55} = 0.0668 \quad \Rightarrow \quad 6.68\% \text{ } O_2$$

$$N_2 \quad \frac{104.3}{138.55} = 0.7528 \quad \Rightarrow \quad 75.28\% \text{ } N_2$$

100 % products

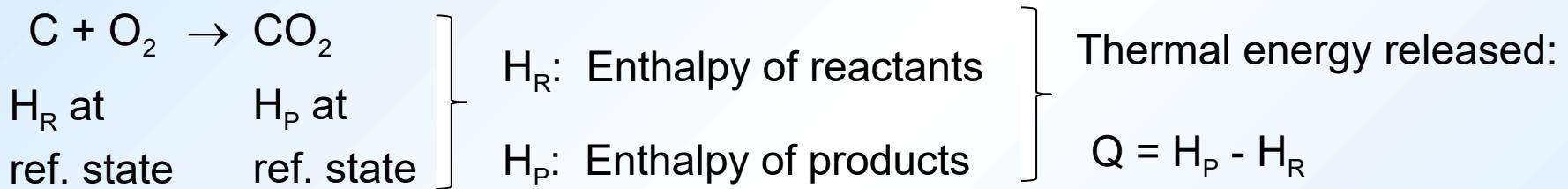
Example: Ultimate analysis of coal: 74 % C, 5 % H₂, 6 % O₂, 1 % S, 1.2 % N₂, 3.8 % moisture, 9 % Ash. Find the theoretical air-fuel ratio (AF) in kg air / kg fuel. Assume complete burning.

C + O₂ → CO₂ ⇒ 12 kg of C requires 32 kg of O₂ for complete burning

H₂ + $\frac{1}{2}$ O₂ → H₂O ⇒ 2 kg of H requires 16 kg of O₂ for complete burning

S + O₂ → SO₂ ⇒ 32 kg of S requires 32 kg of O₂ for complete burning

$$\left(\frac{32}{12} \frac{\text{kg O}_2}{\text{kg C}} \right) \left((0.74) \left(\frac{\text{kg C}}{\text{kg fuel}} \right) \right) + \left(\frac{16}{2} \right) (0.05) + \left(\frac{32}{32} \right) (0.01) = 2.3833 \frac{\text{kg O}_2}{\text{kg fuel}}$$


Air has 23 % by mass O₂ or 0.23 $\frac{\text{kg O}_2}{\text{kg air}}$

$$\text{AF} = \frac{0.3833}{0.23} \frac{\text{kg O}_2 / \text{kg fuel}}{\text{kg O}_2 / \text{kg air}} = 10.36 \frac{\text{kg air}}{\text{kg fuel}}$$

7.3 Enthalpy of Formation

Assumption: The enthalpy of all elements is taken to be zero at the arbitrary reference state of 25 °C and 100 kPa.

$$Q = H_P - H_R = \sum_{\text{products}} n_i \bar{h}_i - \sum_{\text{reactants}} n_j \bar{h}_j \left. \begin{array}{l} \bar{h}: \text{molal enthalpy in kJ/kmol of mixture} \\ \bar{h}_i: \text{partial molal enthalpy in kJ/kmol of i} \end{array} \right\}$$

$$\sum n_i \bar{h}_i = \bar{h}_C + \bar{h}_{O_2} = 0$$

For the above reaction:

$$\sum n_j \bar{h}_j = \bar{h}_{CO_2}$$

$$Q = -\bar{h}_{CO_2}$$

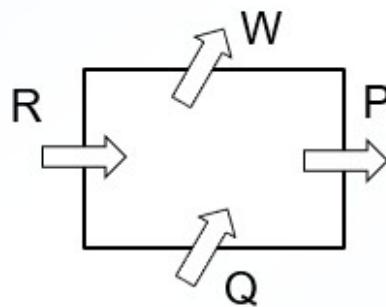
$$\bar{h}_{CO_2} = -393\,757 \text{ kJ/kmol of CO}_2$$

Enthalpy of formation of CO₂ at the reference state 25 °C and 1 atm.

Enthalpy of formation of compounds are given in thermodynamic tables.

CO_2 : - 393 797 kJ/kmol

CO : - 110 596 kJ/kmol


H_2O (liq.): - 286 010 kJ/kmol

H_2O (gas): - 241 971 kJ/kmol

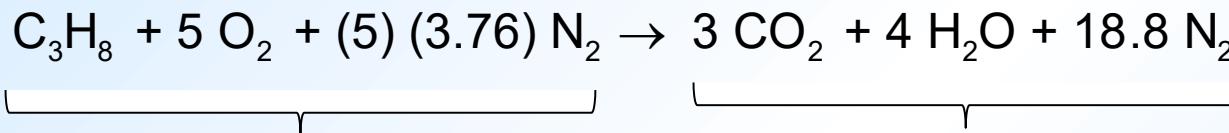
CH_4 : - 74 917 kJ/kg

Sometimes, the reference state is given at 100 kPa instead of 1 atm. This changes the enthalpy values, slightly.

7.4 First Law Analysis of Reacting Systems

$$\dot{Q} + \sum_R n_i \bar{h}_i \rightarrow \dot{W} + \sum_P n_j \bar{h}_j$$

n_i : Moles of reactant i


h : Enthalpy of formation at

n_j : Moles of product j

the given state

Example: Propane burns in atmospheric air (Steady State Steady Flow – SSSF – process). Both the reactants and the products are at 25 °C and 1 atm. Apply the first law.

At 25 °C and 1 atm

At 25 °C and 1 atm

H₂O is in liquid form

First law: $\dot{Q} + \sum_R n_i \bar{h}_i \rightarrow \dot{W} + \sum_P n_j \bar{h}_j \quad \dot{W} = 0$

$$\sum_R n_i \bar{h}_i = (\bar{h}_f^0)_{\text{C}_3\text{H}_8} = -103\,909 \text{ kJ/kmol}$$

Oxygen and nitrogen are pure gases. So, their enthalpies of formation are zero.

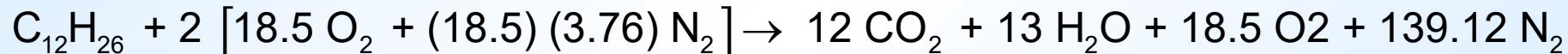
$$\begin{aligned}\sum_P n_j \bar{h}_j &= 3 \left(\bar{h}_f^0 \right)_{CO_2} + 4 \left(\bar{h}_f^0 \right)_{H_2O \text{ Liq}} = (3) (-393\ 757) + (4) (-286\ 010) \\ &= -2\ 325\ 311 \text{ kJ}\end{aligned}$$

$$\dot{Q} = -2\ 325\ 311 + 103\ 909 = -2\ 221\ 402 \text{ kJ/kmol C}_3\text{H}_8$$

Change this to kg basis. Molecular weight of C_3H_8 is 44 kg/kmol

$$\dot{Q} = -50\ 486.4 \text{ kJ/kg C}_3\text{H}_8$$

In most cases, neither the reactants nor the products are at the reference state of 1 atm and 25 °C. Then, we need a correction for the enthalpy of formations.


$$\dot{Q} + \sum_R n_i \left[\bar{h}_f^0 + \Delta \bar{h} \right]_i \rightarrow \dot{W} + \sum_P n_j \left[\bar{h}_f^0 + \Delta \bar{h} \right]_j$$

The corrections Δh are given in tables.

Example

Diesel engine uses $C_{12}H_{26}$ (dodecane). Air fuel mixture is 200 % theoretical, at 25 °C and 1 atm. $C_{12}H_{26}$ has an enthalpy of formation of - 394 199 kJ/kg. After complete combustion, products leaves at 1 atm and 600 K. Heat loss is measured as 232 000 kJ/kmol fuel. Find W in kW if $m_f = 1$ kmol/hour

First law $\dot{Q} + \sum_R n_i [\bar{h}_f^0 + \Delta \bar{h}]_i \rightarrow \dot{W} + \sum_P n_j [\bar{h}_f^0 + \Delta \bar{h}]_j$

$$\dot{Q} = -232\ 000 \text{ kJ/kmol fuel}$$

$$\sum_R n_i [\bar{h}_f^0 + \Delta \bar{h}]_i = (\bar{h}_f^0)_{C_{12}H_{26}} = -394\ 971 \text{ kJ/kmol fuel}$$

$$\begin{aligned}\sum_P n_j \left[\bar{h}_f^0 + \Delta \bar{h} \right]_j &= (12) (-393\,757 + 12\,916) + \\ &(13) (-2412\,971 + 10\,498) + \\ &(18.5) (-9\,247) + (139.12)(8\,891) \\ &= -6\,171\,255 \text{ kJ(kmol fuel)}\end{aligned}$$

$$\dot{Q} + H_R = W + H_P \Rightarrow -232\,000 - 394\,971 = W - 6\,171\,255$$

$$W = 5\,544\,284 \text{ kJ/kmol fuel}$$

$$\begin{aligned}\dot{W} &= W \dot{m}_f = 5\,544\,284 \text{ kJ/hour} \\ &= 1540 \text{ kJ/s} = 1540 \text{ kW}\end{aligned}$$

7.3 Adiabatic Flame Temperature

It is the temperature of the products under the following conditions:

- No work, No heat transfer
- All the available chemical energy is converted to thermal energy and kept in the system
- 100 % theoret,cal air is supplied
- Complete combustion
- No dissociation of products

Example: Propane is burning at 25 °C and 1 atm. Find the adiabatic flame temperature.

$$H_R = \sum_R n_i \left[\bar{h}_f^0 + \Delta \bar{h}_0 \right]_i = (1) (-103\ 909) + 0 + 0 \\ = -103\ 909 \text{ kJ/kmol C}_3\text{H}_8$$

$$H_P = (3) (-393\ 757 + \Delta h_{CO_2}) + (4) (-241\ 971 + \Delta h_{H_2O}) + \\ (18) (0 + \Delta h_{N_2})$$

All the Δh 's depend on temperature

Guess 1: $T_1 = 2500 \text{ K} \Rightarrow H_{P1} = 10\ 845 \text{ kJ/kmol C}_3\text{H}_8$

Guess 2: $T_2 = 2300 \text{ K} \Rightarrow H_{P2} = -206\ 068 \text{ kJ/kmol C}_3\text{H}_8$

Using linear interpolation:

$$T = T_1 + \frac{H_R - H_{P1}}{H_{P2} - H_{P1}} (T_2 - T_1) = 2394 \text{ K} \Rightarrow H_P \approx H_R$$

Adiabatic flame temperature:

ME – 351 THERMODYNAMICS OF HEAT POWER
