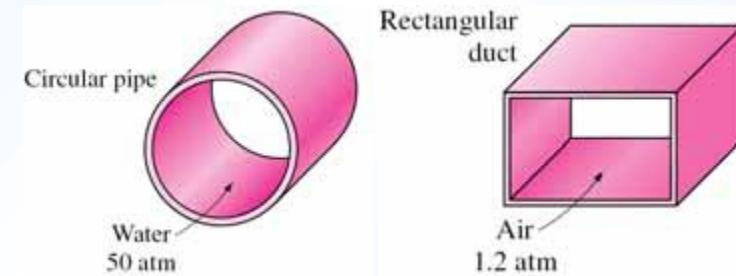


9 - Forced Convection - Internal Flow

Pipe: Circular cross section

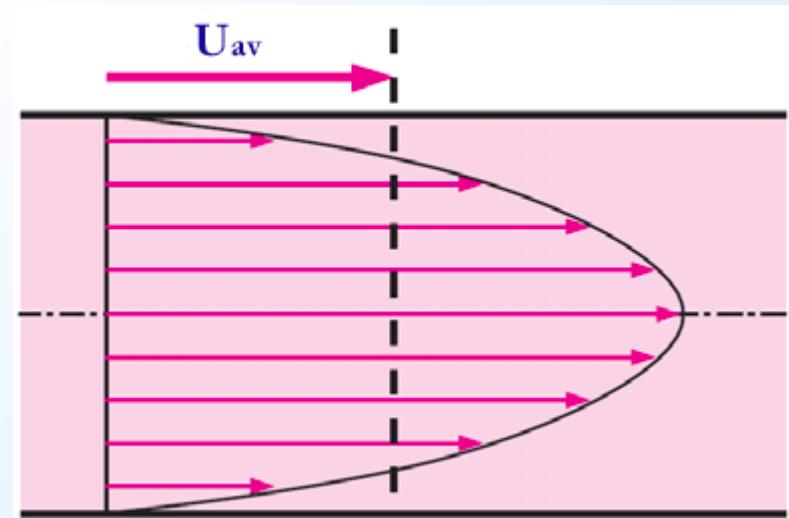
Tube: Small-diameter pipe

Duct: Non-circular cross section



The fluid velocity changes from *zero at the surface (no-slip)* to a maximum at the pipe center.

It is convenient to work with an *average velocity, which remains constant in incompressible flow when the cross-sectional area is constant.*



Average velocity: $\dot{m} = \rho U_{av} A_c$

For incompressible flow in a circular pipe of radius R :

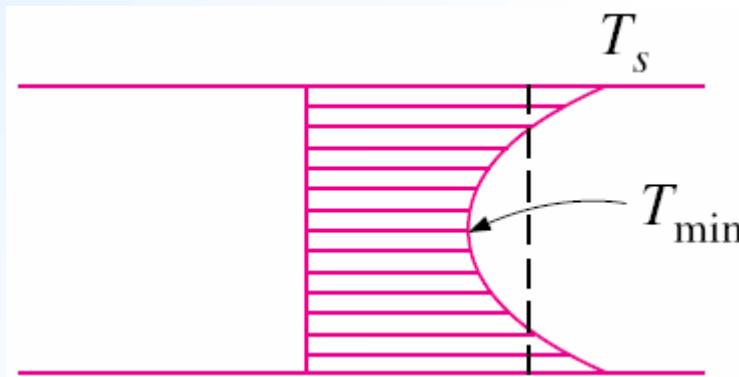
$$\dot{m} = \frac{\int_{A_c} \rho u(r) dA_c}{\rho A_c} = \frac{\int_0^R u(r) 2 \pi r dr}{\pi R^2} = \frac{2}{R^2} \int_0^R u(r) r dr$$

Average temperature: Define the value of the mean temperature, T_m

$$T_m = \frac{\int c_p T(r) dm}{\rho A_c} = \frac{\int_0^R c_p T(r) \rho u(r) 2 \pi r dr}{\rho U_{av} (\pi R^2) c_p} = \frac{2}{U_{av} R^2} \int_0^R T(r) u(r) r dr$$

$$T_m = \frac{\int c_p T(r) dm}{\rho A_c} = \frac{\int_0^R c_p T(r) \rho u(r) 2 \pi r dr}{\rho U_{av} (\pi R^2) c_p} = \frac{2}{U_{av} R^2} \int_0^R T(r) u(r) r dr$$

The **mean temperature**, T_m , (sometimes called **bulk temperature**, T_b , or **mixing-cup temperature**) of the fluid changes during heating or cooling



Actual



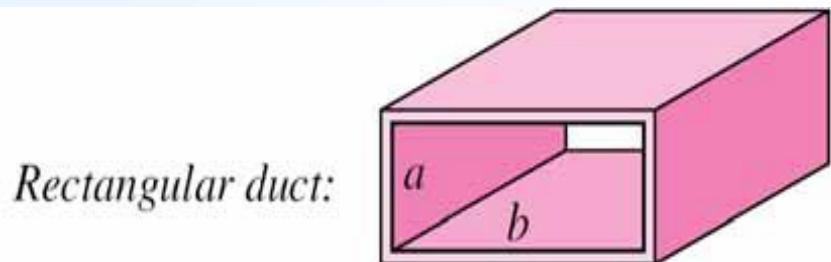
Idealized

Flow in Tubes

For flow in a circular tube, the Reynolds number is defined as

$$Re = \frac{\rho U_{av} D}{\mu} = \frac{U_{av} D}{\nu}$$

For flow through noncircular tubes, D is replaced by the **hydraulic diameter**, D_h



$$D_h = \frac{4 A_c}{P}$$

← Cros sectional area
← Wetted perimeter

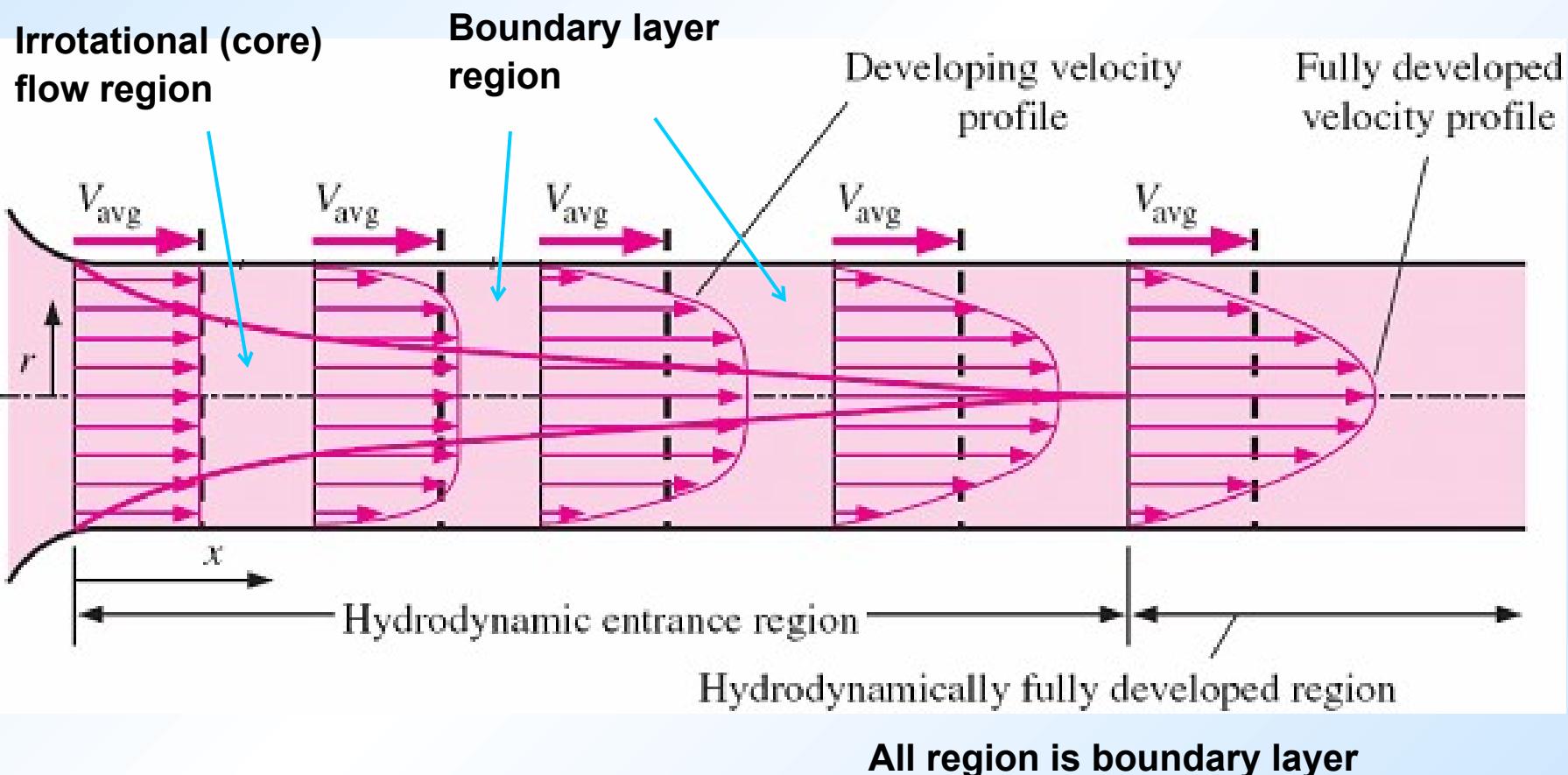
$$D_h = \frac{4ab}{2(a+b)} = \frac{2ab}{a+b}$$

Laminar flow: $Re < 2300$

Transitional flow: $2300 \leq Re \leq 10,000$

Fully turbulent flow : $Re > 10,000$

Hydrodynamic entrance region

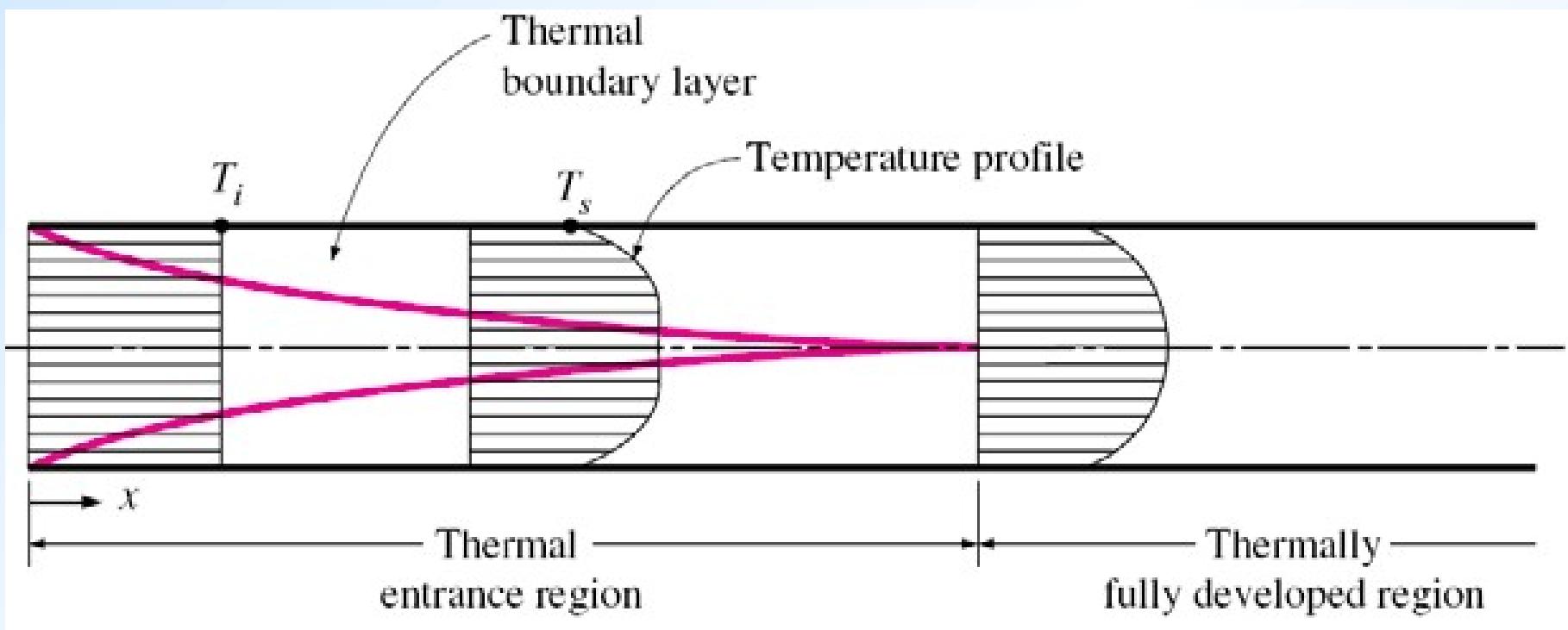


Hydrodynamic entrance region is the region from the pipe inlet to the point at which the boundary layer merges at the centerline.

Hydrodynamically fully developed region is the region beyond the entrance region in which the velocity profile is fully developed and remains unchanged. The velocity profile in the fully developed region is

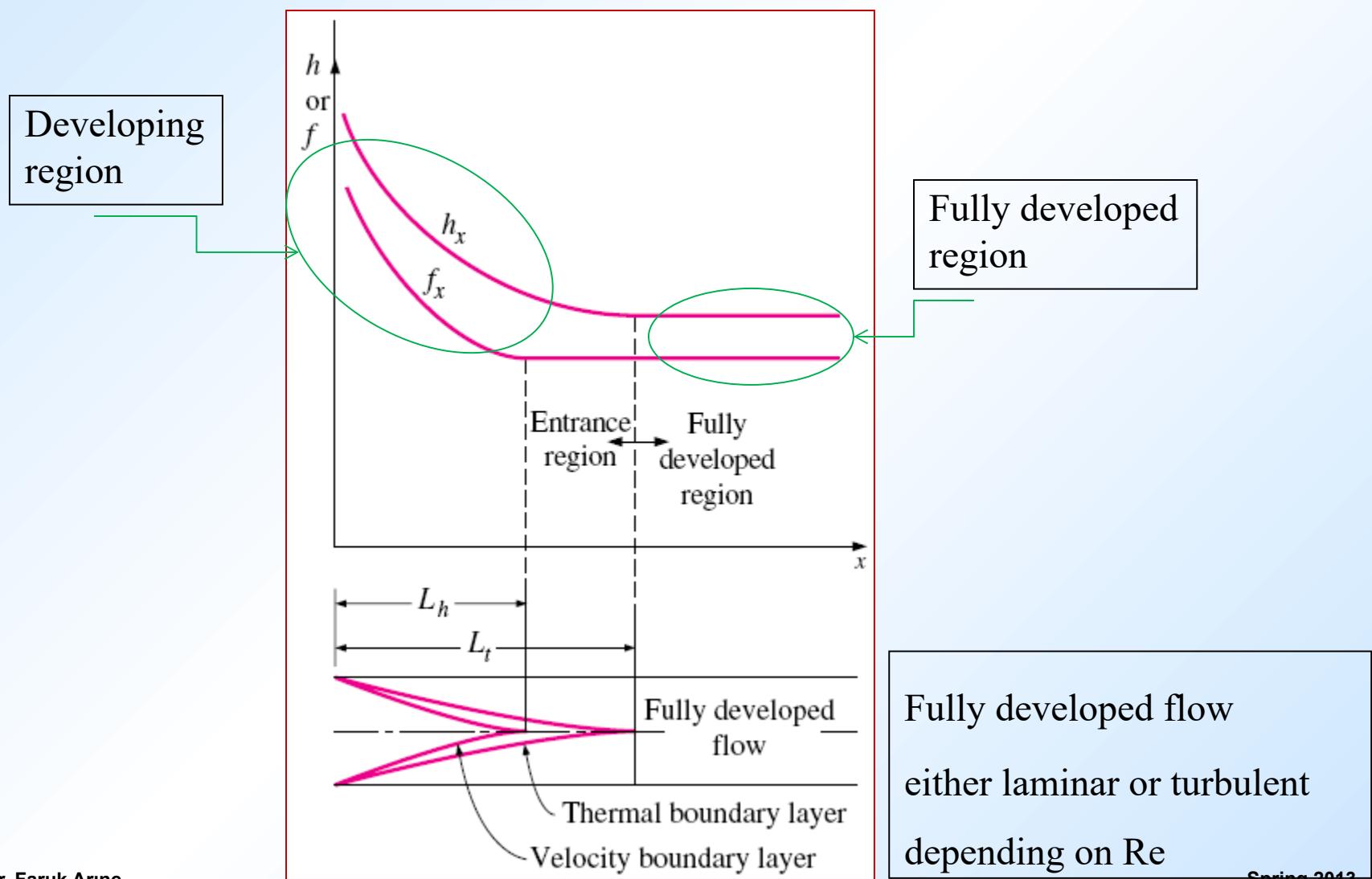
- *parabolic in laminar flow, and*
- somewhat *flatter or fuller in turbulent flow.*

Thermal entrance region



Thermally fully developed region is the region beyond the thermal entrance region in which the dimensionless temperature profile expressed as $(T_s - T)/(T_s - T_m)$ remains unchanged.

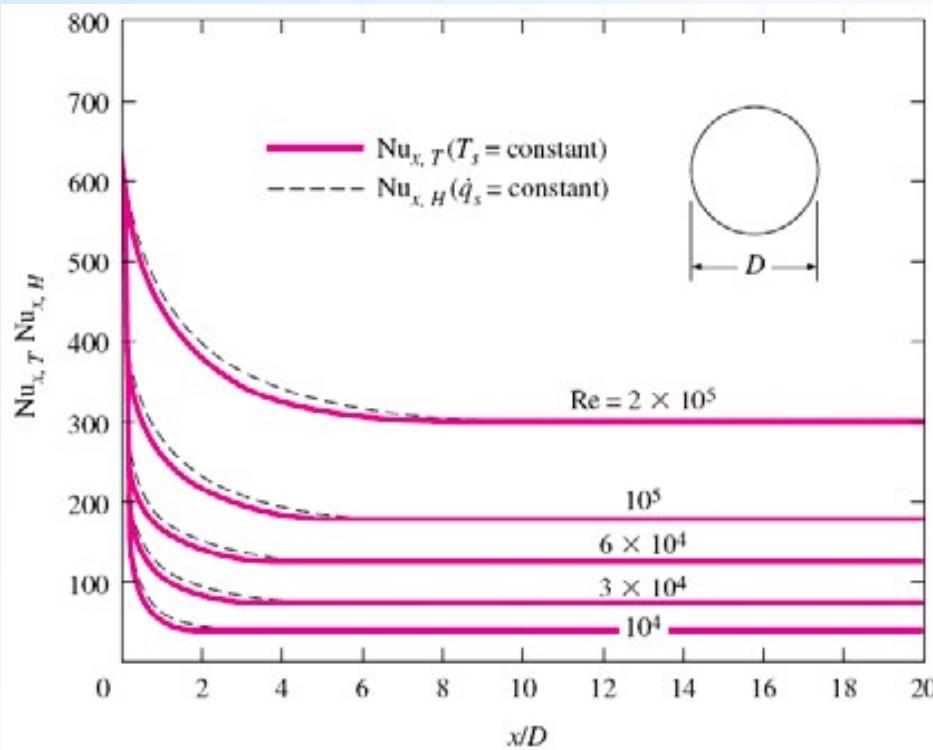
Heat transfer coefficient and friction factor



Entry lengths

Laminar Flow	Hydrodynamic	$L_{h,\text{laminar}} = 0.065 \text{ Re D}$
	Thermal	$L_{t,\text{laminar}} = 0.037 \text{ Re}_D \text{ Pr D}$
		$L_{t,\text{laminar}} = 0.053 \text{ Re}_D \text{ Pr D}$
Turbulent Flow	Hydrodynamic	$L_{h,\text{turbulent}} = 4.4 \text{ Re}^{1/6} \text{ D}$
	Thermal	$L_{t,\text{turbulent}} = 10 \text{ D}$

Turbulent flow Nusselt numbers



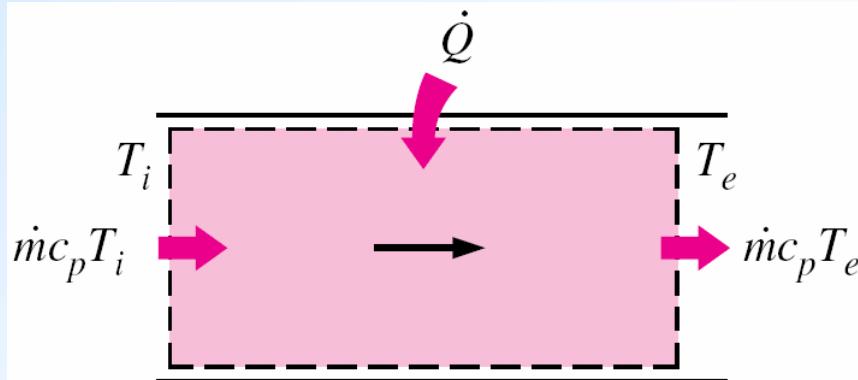
The Nusselt numbers are much higher in the entrance region. The Nusselt number reaches a constant value at a distance of less than 10 diameters. The Nusselt numbers for the uniform surface temperature and uniform surface heat flux conditions are identical in the fully developed regions, and nearly identical in the entrance regions.

Nusselt number is insensitive to the type of thermal boundary condition.

General Thermal Analysis

For steady flow in tubes:

$$\dot{Q} = \dot{m} c_p (T_e - T_i)$$



Energy balance:

$$\dot{Q} = \dot{m} c_p (T_e - T_i)$$

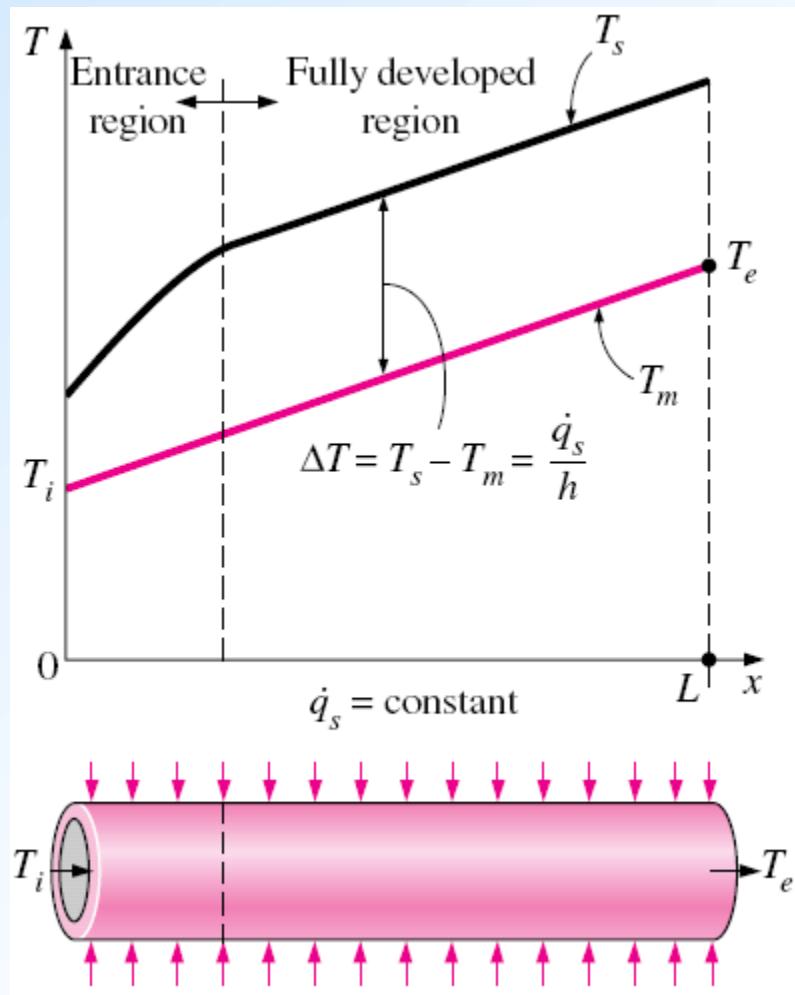
The thermal conditions at the surface can usually be approximated as:

- *constant surface temperature, or*
- *constant surface heat flux.*

The mean fluid temperature at a cross section, T_m , *must* change during heating or cooling.

Either $T_s = \text{constant}$ or $q_s = \text{constant}$ at the surface of a tube, but not both.

Constant Surface Heat Flux, q_s



$$\dot{Q} = m c_p (T_e - T_i)$$

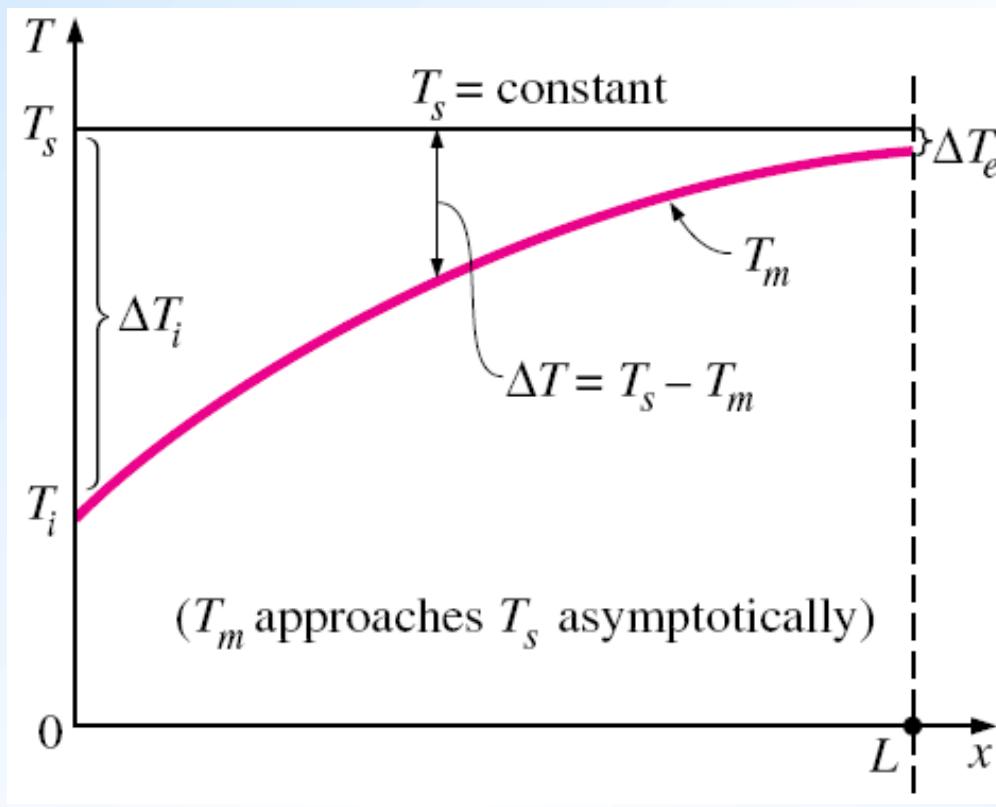
$$m = A_c \rho U_{av} = \pi R^2 \rho U_{av}$$

$$\dot{Q} = q_s A_s = q_s 2 \pi R L$$

$$\dot{Q} = \int_0^L m c_p \frac{\partial T}{\partial x} dx$$

$$\frac{\partial T}{\partial x} = \frac{dT_s}{dx} = \frac{dT_m}{dx} = \text{constant}$$

Constant Surface Temperature, T_s



LMTD: Log Mean Temperature Difference

$$\dot{Q} = m c_p (T_e - T_i)$$

$$m = A_c \rho U_{av} = \pi R^2 \rho U_{av}$$

$$\dot{Q} = \int_0^L m c_p \frac{\partial T}{\partial x} dx$$

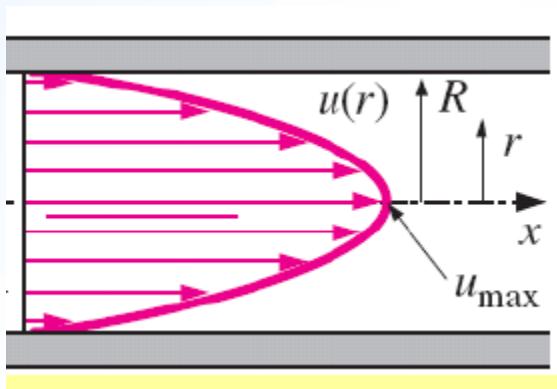
$$\dot{Q} = h A_s LMTD$$

$$LMTD = \frac{\Delta T_e - \Delta T_i}{\ln\left(\frac{\Delta T_e}{\Delta T_i}\right)}$$

Laminar Flow in Tubes

Assumptions: Steady laminar flow;
Incompressible fluid;
Constant properties;
Fully developed region; and
Straight circular tube.

- The velocity profile $u(r)$ remains unchanged in the flow direction.
- No motion in the radial direction.
- No acceleration.



$$u(r) = U_{max} \left(1 - \frac{r^2}{R^2} \right)$$

$$U_{max} = 2 U_{av}$$

Pressure Drop

$$\Delta P = P_1 - P_2 = \frac{8 \mu L U_{av}}{R^2} = \frac{32 \mu L U_{av}}{D^2}$$

$$\Delta P = P_1 - P_2 = f \frac{L}{D} \frac{\rho U_{av}^2}{2}$$

Friction factor Dynamic pressure

$$f = \frac{64 \mu}{\rho D U_{av}} = \frac{64}{Re}$$

Temperature Profile and Nusselt Number

Laminar, Fully-developed Flow

Constant surface heat flux, q_s :

$$T(r) = T - \frac{q_s R}{k} \left(\frac{3}{4} - \frac{r^2}{R^2} + \frac{r^4}{4 R^4} \right)$$

$$Nu = \frac{h D}{k} = 4.36$$

Laminar, Fully-developed Flow

Constant surface temperature, T_s :

$$Nu = \frac{h D}{k} = 3.66$$

**Laminar,
Fully-developed Flow
in Non-circular Tubes**

Tube Geometry	a/b or θ°	Nusselt Number		Friction Factor f
		$T_s = \text{Const.}$	$\dot{q}_s = \text{Const.}$	
Circle	—	3.66	4.36	64.00/Re
Rectangle	a/b			
	1	2.98	3.61	56.92/Re
	2	3.39	4.12	62.20/Re
	3	3.96	4.79	68.36/Re
	4	4.44	5.33	72.92/Re
	6	5.14	6.05	78.80/Re
	8	5.60	6.49	82.32/Re
	∞	7.54	8.24	96.00/Re
Ellipse	a/b			
	1	3.66	4.36	64.00/Re
	2	3.74	4.56	67.28/Re
	4	3.79	4.88	72.96/Re
	8	3.72	5.09	76.60/Re
	16	3.65	5.18	78.16/Re
Isosceles Triangle	θ			
	10°	1.61	2.45	50.80/Re
	30°	2.26	2.91	52.28/Re
	60°	2.47	3.11	53.32/Re
	90°	2.34	2.98	52.60/Re
	120°	2.00	2.68	50.96/Re

Developing Laminar Flow in the Entrance Region

For a circular tube of length L subjected to constant surface temperature, the average Nusselt number for the *thermal entrance region (hydrodynamically developed flow)*, **Sieder and Tate** equation is:

$$Nu = 3.66 + \frac{0.0668 (D/L) Re Pr}{1 + 0.04 [(D/L) Re Pr]^{2/3}} = 3.66 + \frac{0.0668 Gz}{1 + 0.04 Gz^{2/3}}$$

For Flow between Isothermal Plates:

$$Nu = 7.54 + \frac{0.03 (D_h/L) Re Pr}{1 + 0.016 [(D_h/L) Re Pr]^{2/3}}$$

Turbulent Flow in Tubes

Friction Factor for Smooth Tubes: (Petukhov Equation)

$$f = (0.79 \ln(Re) - 1.64)^{-2} \quad 3000 < Re < 5 \cdot 10^6$$

For Fully-developed Flow: (Dittus- Boelter Equation)

$$Nu = 0.023 Re^{0.8} Pr^n$$

$$Re > 10\,000$$

$$n = 0.4 \text{ heating}$$

$$0.7 \leq Pr \leq 160$$

$$n = 0.3 \text{ cooling}$$

These are approximately valid for developing turbulent flow in the entrance region

Modified correlations exists for other conditions such as liquid metals, surface roughness, property variations due to large temperature changes, etc.

The Dittus-Boelter correlation may be used for small to moderate temperature differences, $T_{\text{wall}} - T_{\text{avg}}$, with all properties evaluated at an averaged temperature, T_{avg} .

When the difference between the surface and the fluid temperatures is large, it may be necessary to account for the variation of viscosity with temperature. Therefore a modified form of Dittus-Boelter equation was proposed by **Sieder and Tate** (1936).

$$\text{Nu} = 0.027 \text{ Re}^{0.8} \text{ Pr}^n \left(\frac{\mu}{\mu_s} \right)^{0.14}$$

$\text{Re} > 10\,000 \quad n = 0.4 \text{ heating}$

$0.7 \leq \text{Pr} \leq 16700 \quad n = 0.3 \text{ cooling}$

$\frac{L}{D} > 10$

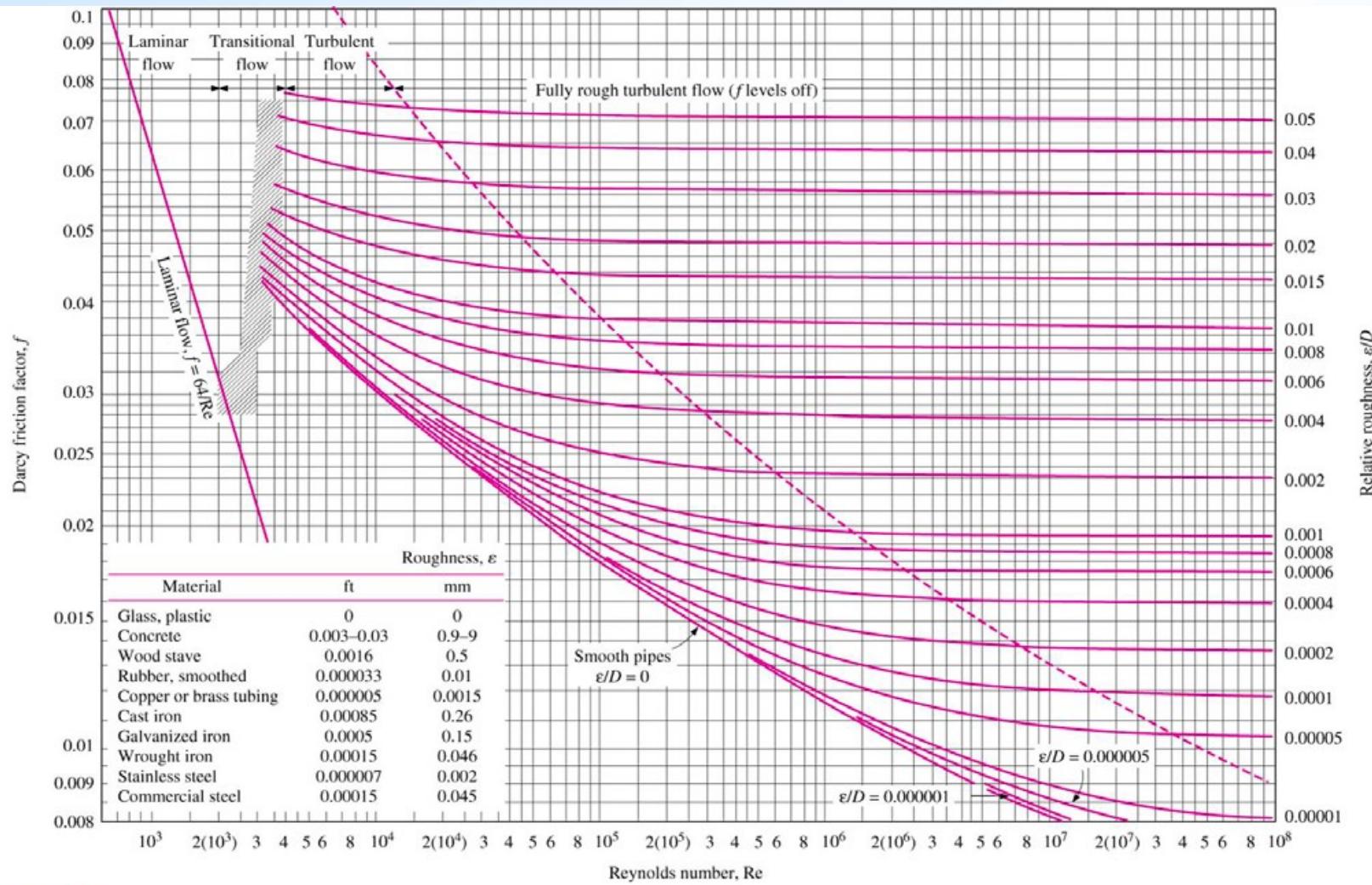
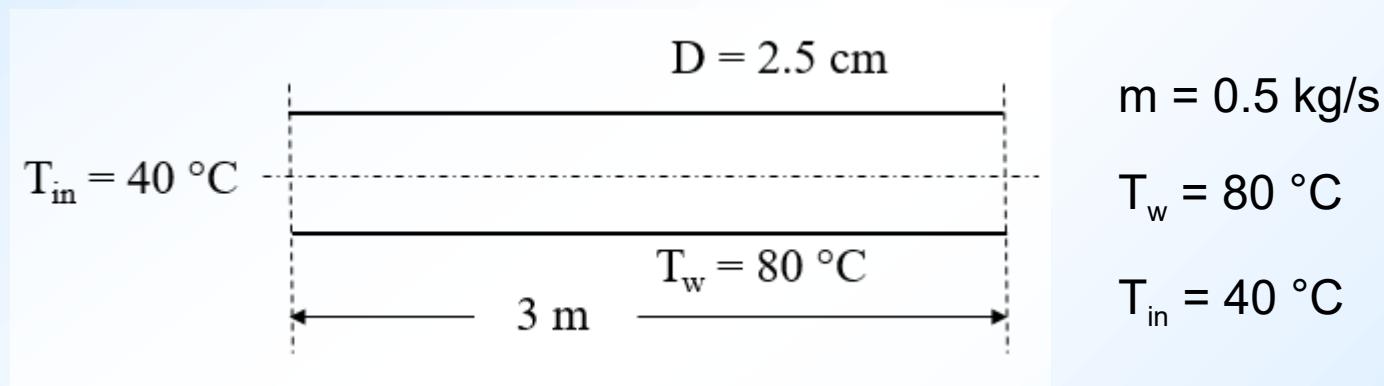


FIGURE A-20

The Moody chart for the friction factor for fully developed flow in circular pipes for use in the head loss relation $\Delta P_L = f \frac{L}{D} \frac{\rho V^2}{2}$. Friction factors in the turbulent flow are evaluated from the Colebrook equation $\frac{1}{\sqrt{f}} = -2 \log_{10} \left(\frac{\epsilon/D}{3.7} + \frac{2.51}{Re \sqrt{f}} \right)$.

Example 1

Water at a temperature of 40°C flows through a 2.5 cm OD smooth-walled tube at a rate of 0.5 kg/s. The tube wall is kept at 80°C . Find h and Q if the length of the tube is 3 m. Assume that the velocity and temperature profiles are fully developed.



Solution

$$\text{Nu} = 0.023 \text{ Re}^{0.8} \text{ Pr}^{0.4}$$

For heating the fluid

Evaluate properties at the bulk temperature $T_b = \frac{T_{in} + T_{out}}{2}$ $T_{out} = ?$

Assume a value for T_{out} and then iterate.

Assume $T_{out} = 60 \text{ }^{\circ}\text{C}$ $T_b = \frac{T_{in} + T_{out}}{2} = \frac{40 + 60}{2} = 50 \text{ }^{\circ}\text{C}$

Properties of water at $50 \text{ }^{\circ}\text{C}$

$$\left. \begin{array}{ll} \rho = 987 \text{ kg/m}^3 & k = 0.646 \text{ W/m.K} \\ \mu = 5.5 \cdot 10^{-4} \text{ kg/m.s} & \text{Pr} = 3.5 \\ c_p = 4.176 \text{ kJ/kg.K} & \end{array} \right\}$$

$$Nu = 0.023 Re^{0.8} Pr^{0.4} = 0.023 \left(\frac{U_{mean} D}{\mu / \rho} \right)^{0.8} (3.5)^{0.4} \quad \text{if turbulent}$$

$$U_{\text{mean}} = \frac{\dot{m}}{\rho A} = \frac{0.5}{(987) \frac{\pi (0.025)^2}{4}} = 1.032 \text{ m/s}$$

$$Re = \frac{U_{\text{mean}} D}{\mu/\rho} = \frac{(1.032)(0.025)}{5.5 \cdot 10^{-4} / 987} = 4.6 \cdot 10^4 > 2300 \text{ Turbulent}$$

$$Nu_D = 0.023 (4.6 \cdot 10^4)^{0.8} (3.5)^{0.4} = 205$$

$$h = Nu \frac{k}{D} = 205 \frac{0.646}{0.025} = 5298 \text{ W/m}^2 \cdot \text{K}$$

Now check T_{out}

$$\left. \begin{aligned} Q &= h A \Delta T = (5928) (\pi) (0.025) (3) (80 - 50) = 37449 \text{ W} \\ Q &= \dot{m} c_p (T_{\text{out}} - T_{\text{in}}) \end{aligned} \right\}$$

$$Q = \dot{m} c_p (T_{\text{out}} - T_{\text{in}}) \Rightarrow T_{\text{out}} = T_{\text{in}} - \frac{Q}{\dot{m} c_p} = 40 - \frac{37449}{(0.5)(4179)} = 57.9 \text{ } ^\circ\text{C}$$

This is close enough to the first assumption 60 °C.

If not, repeat the calculation using the new T_{out} .

Dimensional Analysis

This is for forced convection heat transfer in tube (pipe) flow.

Write down all the parameters that h depends on: $h = f(D, \rho, \mu, c_p, k, U_m)$

Assume that there is a power relation: $h = C (D)^a (\rho)^b (\mu)^c (c_p)^d (k)^e (U_m)^f$

Try to find all these powers, a, b, c, d, e , and f , by expressing every term in basic units first.

Basic units are: Length : L (meters)

Mass : m (kilograms)

Time : T (seconds)

Temperature : θ ($^{\circ}$ C)

The proper units of the terms in terms of these basic units:

Write down all the parameters that h depends on: $h = f(D, \rho, \mu, c_p, k, U_\infty)$

$$h \text{ (W/m}^2\text{.K)} : \underbrace{(M L^2 T^{-3})}_{W} (L^{-2}) (\theta^{-1}) = M T^{-3} \theta^{-1}$$

$$W : \text{kg.m}^2/\text{s}^3$$

$$D \text{ diameter or characteristic length} : L$$

$$\rho \text{ (kg/m}^3) : M L^{-3}$$

$$\mu \text{ (kg/m.s)} : M L^{-1} T^{-1}$$

$$c_p \text{ (J/kg.K)} : M L^2 T^{-2} M^{-1} \theta^{-1} = L^2 T^{-2} \theta^{-1}$$

$$k \text{ (W/m.K)} : M L^2 T^{-3} L^{-1} \theta^{-1} = M L T^{-3} \theta^{-1}$$

$$U_\infty \text{ (m/s)} : L T^{-1}$$

Substitute in $h = C D^a \rho^b \mu^c c_p^d k^e (U_m)^f$

$$M T^{-3} \Theta^{-1} = C (L)^a (M L^{-3})^b (M L^{-1} T^{-1})^c (L^2 T^{-2} \Theta^{-1})^d (M L T^{-3} \Theta^{-1})^e (L T^{-1})^f$$

The powers of the same units on both sides of the equation must be equal.

$$\text{Mass (M)} : 1 = b + c + e$$

$$\text{Length (L)} : 0 = a - 3b - c + 2d + e + f$$

$$\text{Time (T)} : -3 = -c - 2d - 3e - f$$

$$\text{Temperature (\theta)} : -1 = -d - e$$

There are 6 unknowns but 4 equations.

Choose any two and express the other unknown powers in terms of these two.

Chose, for example b and c, then using
the above four equations find

$$\left. \begin{array}{l} d = b + c \\ e = 1 - b - c \end{array} \right\} \quad \begin{array}{l} f = b \\ a = b - 1 \end{array}$$

Substitute in the original equation $h = C D^{(b-1)} \rho^b \mu^c c_p^{(b+c)} k^{(1-b-c)} U_m^b$

Collect the terms with
the same powers $\left. \right\} h = C \left(\frac{U_m D \rho c_p}{k} \right)^b \left(\frac{\mu c_p}{k} \right)^c \frac{k}{D}$

Rearrange $\left. \right\} \frac{h D}{k} = C \underbrace{\left(\frac{U_m D \rho c_p}{k} \right)^b}_{\text{Nu}} \underbrace{\left(\frac{\mu c_p}{k} \right)^c}_{\text{Pr}}$

Call $m = b$
 $n = b + c$ $\left. \right\} \text{Nu} = C (\text{Re})^m (\text{Pr})^n$ $\text{Re Pr} \xrightarrow{\text{Pr}} \text{Re Pr} = \text{Pe}$ Peclet number

Jean Claude Eugène Péclet
French physicist

1793 – 1857

Reynolds Analogy

Remember laminar flow over a flat plate

$$\left. \begin{array}{l} C_{fx} = 0.664 Re_x^{-1/2} \\ Nu_x = 0.332 Re_x^{1/2} Pr^{1/3} \end{array} \right\} \quad Nu_x = \frac{1}{2} C_{fx} Re_x Pr^{1/3}$$

This is a similarity between Nu_x and C_{fx}

Can we extend this result to other cases (what other cases?) so that we may use it to predict h ?

$$\left. \begin{array}{l} \frac{Du^+}{Dt^+} = - \frac{\partial P^+}{\partial x^+} + \frac{1}{Re} \nabla^{+2} u^+ \\ \frac{DT^+}{Dt^+} = \frac{1}{Pe} \nabla^{+2} T^+ + \frac{E}{Re} \Phi \end{array} \right\} \quad \begin{array}{l} \text{If} \\ \frac{\partial P^+}{\partial x^+} \ll 1 \\ E \ll 1 \end{array} \quad \left. \begin{array}{l} \frac{Du^+}{Dt^+} = \frac{1}{Re} \nabla^{+2} u^+ \\ \frac{DT^+}{Dt^+} = \frac{1}{Re Pr} \nabla^{+2} T^+ \end{array} \right\}$$

Eckert number

Equations are similar.

$$\left. \frac{Du^+}{Dt^+} = \frac{1}{Re} \nabla^{+2} u^+ \right\} \text{BC's: } \begin{aligned} u^+(0) &= 0 \\ u^+(\infty) &= 1 \end{aligned}$$

$$\left. \frac{DT^+}{Dt^+} = \frac{1}{Re Pr} \nabla^{+2} T^+ \right\} \text{BC's: } \begin{aligned} T^+(0) &= 1 \\ T^+(\infty) &= 0 \end{aligned} \right\} \begin{aligned} T^+ &= \frac{T - T_\infty}{T_w - T_\infty} \\ \text{Same BC's if } T^+ &\rightarrow 1 - T^+ \end{aligned}$$

If $Pr = 1$ then expect identical solution, i.e., $1 - T^+ = \theta^+ \rightarrow u^+$

Then, there must be a relation between C_f and Nu , or h .

Let's have a closer look at C_f and h .

$$C_f = \frac{\tau_w}{\frac{1}{2} \rho U_\infty^2}$$

$$\tau_w = \mu \left. \frac{\partial u}{\partial y} \right|_{y=0} \Rightarrow \tau_w = \frac{\mu U_\infty}{L} \left. \frac{\partial u^+}{\partial y^+} \right|_{y=0}$$

$$C_f = \left. \frac{2 \mu}{\rho U_\infty L} \frac{\partial u^+}{\partial y^+} \right|_{y^+=0}$$

$$C_f = \frac{2}{Re} \left. \frac{\partial u^+}{\partial y^+} \right|_{y^+=0}$$

$$h (T_w - T_\infty) = -k \left. \frac{\partial T}{\partial y} \right|_{y=0}$$

$$h (T_w - T_\infty) = -k \left. \frac{(T_w - T_\infty)}{L} \frac{\partial T^+}{\partial y^+} \right|_{y^+=0} = k \left. \frac{(T_w - T_\infty)}{L} \frac{\partial \theta}{\partial y^+} \right|_{y^+=0}$$

$$Nu = \left. \frac{\partial \theta}{\partial y^+} \right|_{y^+=0}$$

If $Pr = 1$, then $u^+ \rightarrow \theta$ The profiles are identical. So

$$Nu = \frac{1}{2} C_f Re$$

This is called Reynolds analogy (for $Pr = 1$)

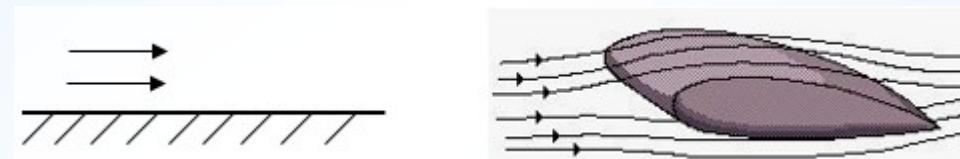
If $Pr \neq 1$, then the profiles are similar, but not identical.

Known from the exact solution that $Pr = \left(\frac{\delta}{\delta_t} \right)^3$

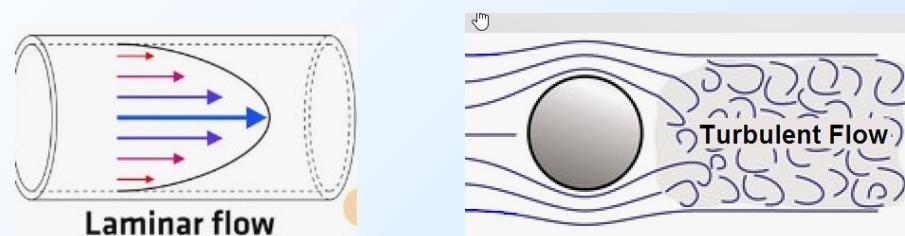
$$\left. \frac{\partial \theta}{\partial y^+} \right|_0 = \left. \frac{1/\delta_t/L}{1/\delta/L} \right|_0 = \frac{\delta}{\delta_t} = Pr^{1/3}$$

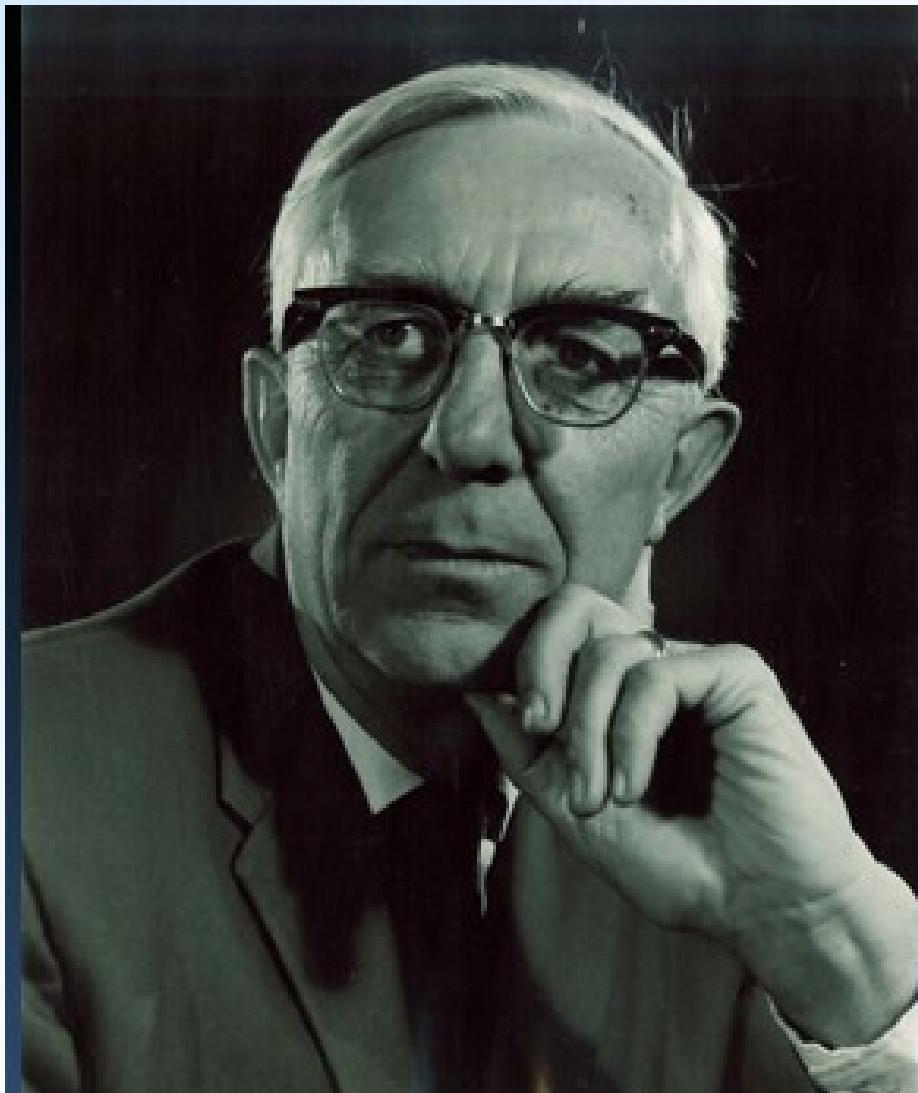
$$Nu = \frac{1}{2} C_f Re Pr^{1/3}$$

When is this Reynolds analogy used?

- ★ $E \ll 1 \rightarrow$ Low-speed flow (E is Eckert Number)
- ★ $\frac{\partial P^+}{\partial x^+} \ll 1$ Flow over flat plates or aerodynamic shapes
- ★ Turbulent pipe flow, because mixing dominates both friction and heat transfer

Reynolds Analogy is not valid for





Ernst R. G. Eckert

Austrian American Scientist

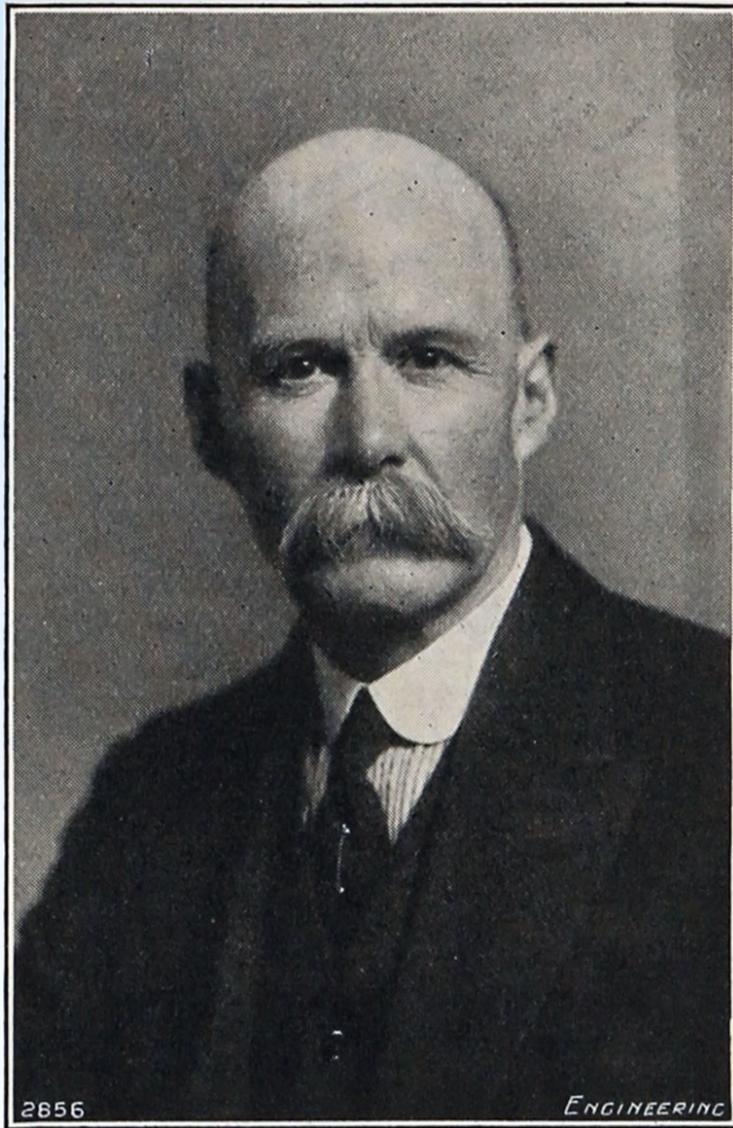
1904 - 2004

Stanton Number: $St = \frac{Nu}{Re \ Pr}$

$$St \ Pr^{2/3} = \frac{1}{2} C_f \quad \text{or} \quad \frac{Nu}{Re \ Pr^{1/3}} = J$$
$$J = \frac{1}{2} C_f$$

} J is Colburn factor
This is called Colburn analogy

For average values of C_f , C_D may be used as long as the drag is mainly due to skin friction.



Sir Thomas Ernest Stanton
British Mechanical Engineer

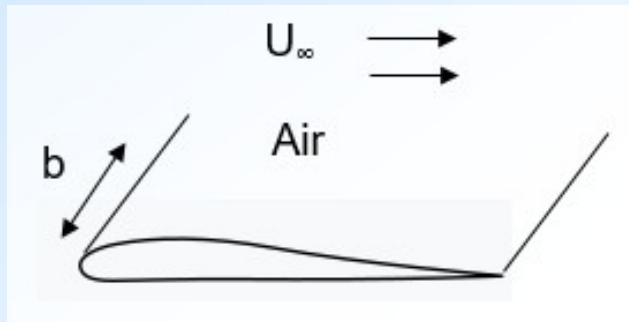
1865 - 1931

Allan Philip Colburn

American Chemical Engineer

1904 - 1955

Example 2



Air flows over a NASA 2405 profile as shown.

$$U_{\infty} = 100 \text{ m/s}$$

$$T_{\infty} = -40 \text{ }^{\circ}\text{C}$$

$$T_w = 20 \text{ }^{\circ}\text{C}$$

Find the heat flow rate, Q , in W/m .

Evaluate properties of air at $\bar{T} = \frac{-40 + 20}{2} = -10 \text{ }^{\circ}\text{C}$	$v = 10.7 \cdot 10^{-6} \text{ m}^2/\text{s}$ $k = 0.023 \text{ W/m.K}$	$Re = \frac{(100)(1)}{10.7 \cdot 10^{-6}} = 9.35 \cdot 10^6$
Find the drag coefficient, C_D , using Re and an experimental Figure.	$Pr = 0.72$ $C_D \approx 7.0 \cdot 10^{-3} = \frac{\text{Total drag} / (b)(L)}{(1/2) \rho U_{\infty}^2}$	$C_f \approx C_D / 2 = 3.5 \cdot 10^{-3}$

$$Nu = \frac{1}{2} C_f Re Pr^{1/3} = \frac{1}{2} (3.5 \cdot 10^{-3}) (9.35 \cdot 10^6) (0.72)^{1/3} = 14665.4$$

$$h = Nu \frac{k}{L} = (14665.4) \frac{0.023}{1} = 337.3 \text{ W/m}^2 \cdot \text{K}$$

$$\dot{Q} = (337.3) (2) (1) (20 + 40) = 40476.5 \text{ W}$$

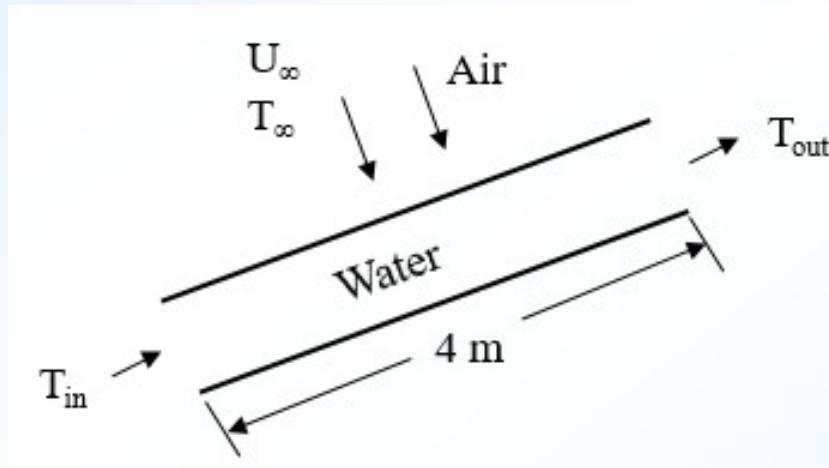
Note that purely hydrodynamic correlations are used.

Example 3

Water flows in a thin-walled tube, 40 mm OD, length 4 m. The inlet temperature of the water is 30 °C. Atmospheric air flows across the tube on the outside. The velocity and temperature of the air are 100 m/s and, 225 °C, respectively.

Estimate the exit temperature of the water.

Assume fully developed conditions for the internal flow of water.



$$D = 40 \text{ mm}$$

$$T_{in} = 30 \text{ }^{\circ}\text{C}$$

$$L = 4 \text{ m}$$

$$T_{out} = ?$$

$$m = 0.25 \text{ kg/s}$$

$$U_{\infty} = 100 \text{ m/s}$$

$$T_{\infty} = 225 \text{ }^{\circ}\text{C}$$

Assumptions: - Steady state

- Tube wall thermal resistance is neglected
- Fully-developed internal flow
- Constant properties
- Changes in KE, PE, flow-work are negligible

This is a typical trial-and-error solution. Assume a value for T_{out} ; then check whether it is close enough to the correct value. If not, repeat the calculation with a new assumption for T_{out} .

Assume $T_{out} = 70 \text{ } ^\circ\text{C}$ First, evaluate properties at
$$\frac{T_{in} + T_{out}}{2} = \frac{70 + 30}{2} = 50 \text{ } ^\circ\text{C}$$
 the average temperature

Properties of water

at the average temperature

$$\frac{T_{in} + T_{out}}{2} = \frac{70 + 30}{2} = 50 \text{ } ^\circ\text{C} = 315 \text{ K}$$

$$\left. \begin{array}{l} \rho = 1/v_f = 991.1 \text{ kg/m}^3 \\ c = 4179 \text{ J/kg.K} \quad k = 0.634 \text{ W/m.K} \\ \mu = 631 \cdot 10^{-6} \text{ N.s/m}^2 \quad \text{Pr} = 4.16 \end{array} \right\}$$

Properties of air, 1 atm

at $T_{\bullet} = 225 \text{ } ^\circ\text{C} = 315 \text{ K}$

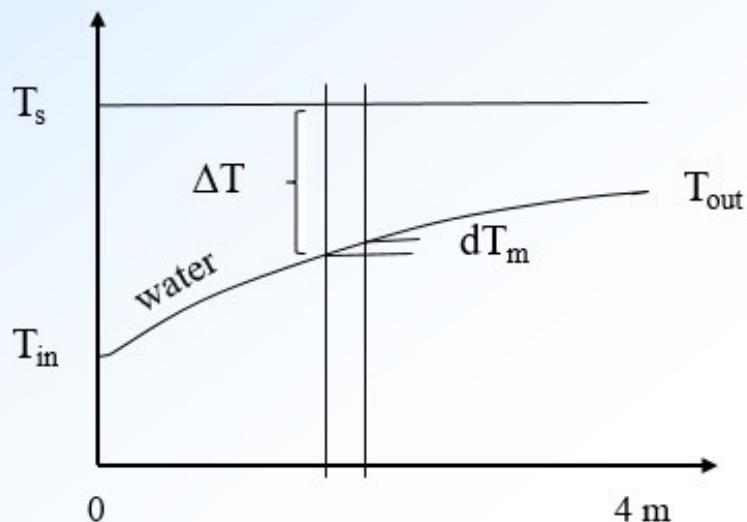
$$\left. \begin{array}{l} v = 38.79 \cdot 10^{-6} \text{ m}^2/\text{s} \\ k = 40.7 \cdot 10^{-3} \text{ W/m.K} \\ \text{Pr} = 0.684 \end{array} \right\}$$

Note that properties are evaluated at the free stream temperature. This is according to the relation given by Žukauskas.

Additional assumption: Use constant surface temperature, T_s .

Algirdas Žukauskas
Lithuanian Scientist

1923 - 1997



At any cross section, $dQ = \dot{m} c_p dT_m$

$$dQ = h_x P dx (T_s - T_m)$$

$$\frac{dT_m}{dx} = \frac{P}{\dot{m} c_p} h_x (T_s - T_m)$$

ΔT

$$\int_{\Delta T_{in}}^{\Delta T_{out}} \frac{d(\Delta T)}{\Delta T} = - \frac{P}{\dot{m} c_p} \int_0^L h_x dx \quad \ln\left(\frac{\Delta T_{out}}{\Delta T_{in}}\right) = \frac{P L}{\dot{m} c_p} \bar{h} \quad \frac{\Delta T_{out}}{\Delta T_{in}} = \exp\left(\frac{P L}{\dot{m} c_p} \bar{h}\right)$$

$$\frac{T_s - T_{m,out}}{T_s - T_{m,in}} = \exp\left(\frac{P L}{\dot{m} c_p} \bar{h}\right), \quad T_s = \text{constant}$$

$$Q = \dot{m} c_p \left[(T_s - T_{m,in}) - (T_s - T_{m,out}) \right] = \dot{m} c_p (\Delta T_{in} - \Delta T_{out}) \\ = \bar{h} A_s (\text{LMTD})$$

Using these derivations: $T_{m,out} = T_{out} = T_s - (T_s - T_{m,in}) \exp\left(\frac{P L}{\dot{m} c_p} \bar{h}\right)$

Replace T_s with T_∞ and h with U where $U = \frac{1}{\frac{1}{h_i} + \frac{1}{h_o}}$

$$T_{m,out} = T_{out} = T_\infty - (T_\infty - T_{m,in}) \exp\left(\frac{P L}{\dot{m} c_p} U\right)$$

Internal Flow: $Re = \frac{4 \dot{m}}{\pi D \mu} = 12611$

$$\bar{h}_i = \frac{k}{D} 0.023 Re^{4/5} Pr^{0.4} = 1230 \text{ W/m}^2 \cdot \text{K}$$

External Flow: $Re = \frac{U_\infty D}{\nu} = 1031 \cdot 10^5$

$$Nu = \frac{\bar{h}_o D}{k} = C Re^m Pr^n \left(\frac{Pr_\infty}{Pr_s} \right)^{1/4}$$

Let $Pr_\infty = Pr_s$

Use Table: $C = 0.26$, $m = 0.6$

$n = 0.37$ for $Pr \leq 10$

$$\bar{h}_o = 234 \text{ W/m}^2 \cdot \text{K}$$

$$U = \frac{1}{\frac{1}{h_i} + \frac{1}{h_o}} = \frac{1}{\frac{1}{1230} + \frac{1}{234}} = 197 \text{ W/m}^2 \cdot \text{K}$$

$$\begin{aligned} T_{m,out} &= T_s - (T_s - T_{m,in}) \exp\left(\frac{P L}{\dot{m} c_p} \bar{h}\right) \\ &= 225 - (225 - 30) \exp\left(\frac{\pi (0.04) (4)}{(0.25) (4179)} (197)\right) = 47.6 \text{ } ^\circ\text{C} \end{aligned}$$

Find $T_s = 63.2 \text{ } ^\circ\text{C}$

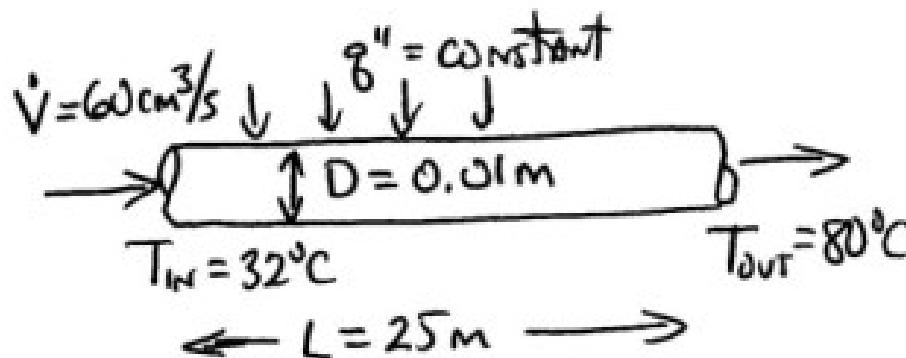
Find $Pr_s = 0.687$

So $Pr_\infty \approx Pr_s$

It checks.

Example 4

In a pharmaceutical application, the product is subjected to a final sterilization by heating it from 32 °C to 80 °C. A flow of 60 cm³/s is passed through a 10-mm tube that is heated with a uniform heat flux produced by wrapping the tube with an electric resistance heater. If product properties can be approximated by those of ethylene glycol, and the tube is 25-m long.



Determine.

- a) the required power (in W);
- b) the wall temperature at the tube exit (in °C).

The required heat transfer rate can be obtained from conservation of energy and the given information. The wall temperature at the tube outlet can be calculated using the basic rate equation ($q'' = h \Delta T$).

Assumptions:

1. The system is steady with no work or potential or kinetic energy effects.
2. The liquid is ideal with constant specific heat.

(a) For conservation of energy on the liquid, assume steady, no work, no potential or kinetic energy effects, and an ideal liquid with constant specific heat so that enthalpy change = $c_p \Delta T$

$$\dot{Q} = \dot{m} c_p (T_{\text{out}} - T_{\text{in}})$$

The properties required to calculate the heat transfer coefficient are evaluated

at $T_{avg} = \frac{32 + 80}{2} = 56 \text{ }^{\circ}\text{C} \approx 330 \text{ K}$

$$\left. \begin{array}{l} \rho = 1089.5 \text{ kg/m}^3 \\ c = 2.549 \text{ kJ/kg.K} \quad k = 0.260 \text{ W/m.K} \\ \mu = 56.1 \cdot 10^{-4} \text{ N.s/m}^2 \quad \text{Pr} = 55 \end{array} \right\}$$

$$\dot{Q} = (1089.5) (60 \cdot 10^{-6}) (2.549 \cdot 10^3) (80 - 32) = 8000 \text{ W}$$

(b) For wall temperature at the tube outlet:

$$\left. \begin{array}{l} q'' = h (T_s - T_{out}) \Rightarrow T_s = T_{out} + \frac{q''}{h} \\ T_s = T_{out} + \frac{\dot{Q} / A}{h} = T_{out} + \frac{\dot{Q}}{\pi D L h} \end{array} \right\}$$

To calculate the heat transfer coefficient, we need the Reynolds number:

$$\left. \begin{array}{l} Re = \frac{\rho V D}{\mu} \Rightarrow V = \frac{\dot{m}}{\rho (\pi / 4) D^2} \\ Re = \frac{4 \dot{m}}{\pi \mu D} = \frac{4 (1089.5) (60 \cdot 10^{-6})}{\pi (56.1 \cdot 10^{-4}) (0.01)} = 1480 \end{array} \right\}$$

Re = 1480 is laminar flow, so we
will check the entrance length } L_{ent}

- 0.053 Re Pr D
- 0.053 (1480) (55.0) (0.01) = 43.2 m

This is significantly longer than the tube length, so the entrance effects must be taken into account.

We do not have a correlation that gives the heat transfer coefficient for laminar, developing flow with a constant wall heat flux boundary condition. So, we will use the Seider and Tate correlation.

Assuming $T_s \sim 350$ K,
 $\mu_s = 34.2 \cdot 10^{-4}$ N.s/m² }
$$\begin{aligned} Nu &= 1.86 Gz^{1/3} \left(\frac{\mu}{\mu_s} \right)^{0.14} \\ &= 1.86 \left[\frac{(1480) (55.0) (0.01)}{25} \right]^{1/3} \left(\frac{56.1 \cdot 10^{-4}}{34.2 \cdot 10^{-4}} \right)^{0.14} \\ &= 6.37 \end{aligned}$$

$$h = \frac{Nu k}{D} = \frac{(6.37)(0.260)}{0.01} = 166 \text{ W/m}^2 \cdot \text{K}$$

$$T_s = 80 + \frac{8000}{\pi (0.01)(25)(166)} = 141.3 \text{ }^\circ\text{C}$$

Re-evaluating μ_s at 373 K (highest temperatures for which we have the properties):

$$\left. \begin{array}{l} \mu_s = 21.5 \cdot 10^{-4} \text{ N.s/m}^2 \\ Nu = 6.80 \\ h = 177 \text{ W/m}^2 \cdot \text{K} \\ T_s = 137.5 \text{ }^\circ\text{C} \end{array} \right\}$$

The wall temperature will be lower than this, since μ_s should be smaller than with what we have available.

10 – High Speed Flow

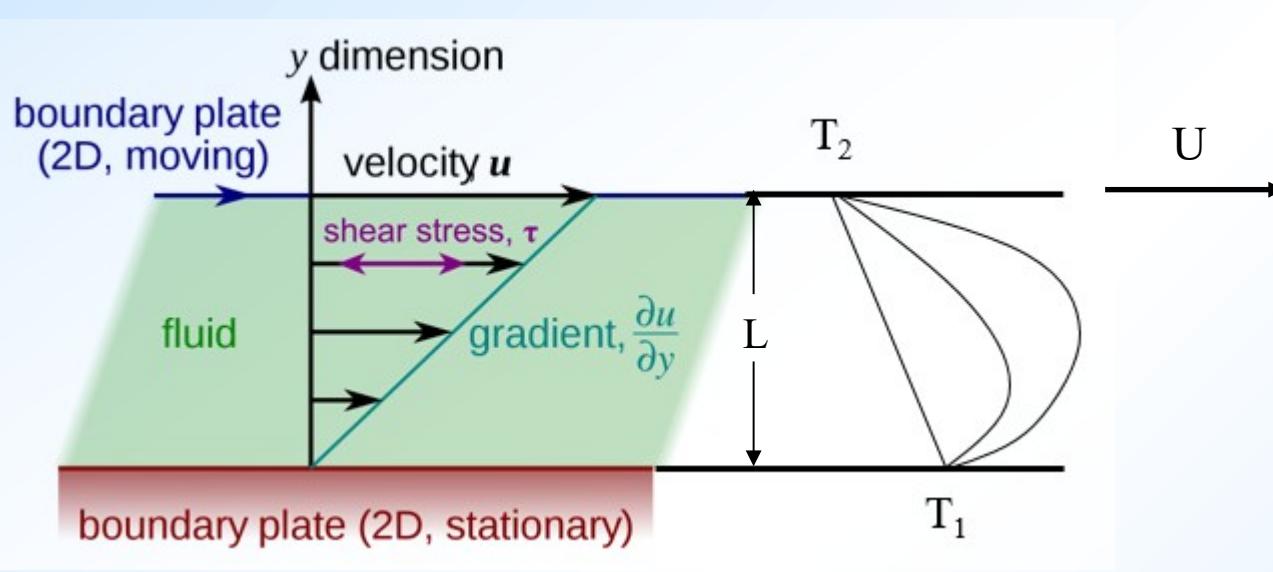
Effects of
high speed

- Viscous dissipation (E) cannot be neglected (for incompressible fluids)
- Viscous dissipation (E) + work of compression (M) cannot be neglected (for compressible fluids)
- Temperature gradients in the boundary layer becomes so large that properties of fluid vary significantly

There are number of techniques developed. We will not see them all. Instead, we will define an average temperature, T_{av} , in $q = h (T_w - T_{av})$

Let's examine two cases, incompressible fluid and compressible fluid.

Incompressible fluid – Couette Flow



$$u(y) = U \frac{y}{L}$$

$$u^+ = \frac{u}{U} = \frac{y}{L} = y^+$$

$$\frac{\partial u^+}{\partial y^+} = 1$$

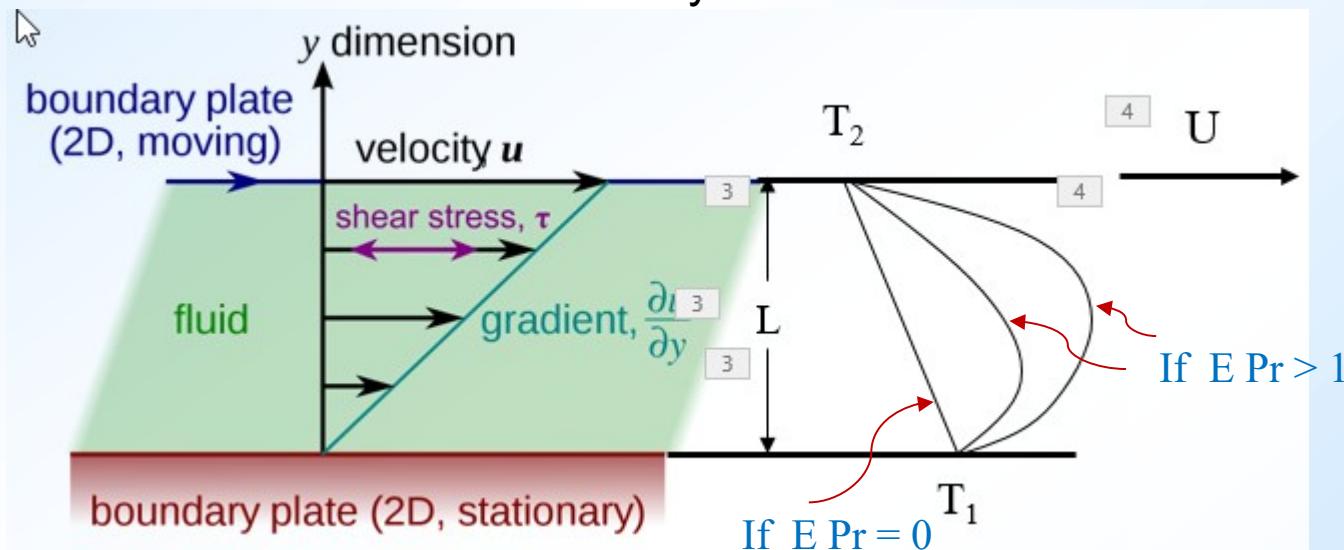
$$T^+ = \frac{T - T_1}{T_2 - T_1}$$

In fluid dynamics, **Couette flow** is the flow of a viscous fluid in the space between two surfaces, one of which is moving tangentially relative to the other with velocity U . The relative motion of the surfaces imposes a shear stress on the fluid and induces flow.

It is named after Maurice Couette, a Professor of Physics at the French University of Angers in the late 19th century.

Non-dimensional
energy equation:

$$u^+ \frac{\partial T^+}{\partial x^+} + v^+ \frac{\partial T^+}{\partial y^+} = \frac{1}{Re \Pr} \left[\frac{\partial^2 T^+}{\partial x^{+2}} + \frac{\partial^2 T^+}{\partial y^{+2}} \right] + \frac{E}{Re} \Phi$$
$$\frac{\partial^2 T^+}{\partial y^{+2}} = -E \Pr$$
$$\Phi = \left(\frac{\partial u^+}{\partial y^+} \right)^2$$



Compressible fluid

Dissipation \rightarrow E What about compression work?

Assume: No friction (no dissipation)
No heat transfer (adiabatic compression)
Perfect gas

Define T_0 , total or stagnation temperature

$$\frac{1}{2} m U^2 = m c_p (T_0 - T) \Rightarrow c_p T + \frac{U^2}{2} c_p T_0 \Rightarrow \frac{T_0}{T} = 1 + \frac{U^2}{2 c_p T}$$

But $c_p - c_v = R$ universal gas constant

$$\frac{1}{c_p} = \frac{k-1}{k} \frac{1}{R}, \quad \frac{c_p}{c_v} = k \text{ or } \lambda, \quad k = 1.4 \text{ for air}$$

$$\left. \frac{T_0}{T} = 1 + \left(\frac{k-1}{2k} \right) \left(\frac{U^2}{R T} \right) \right\}$$

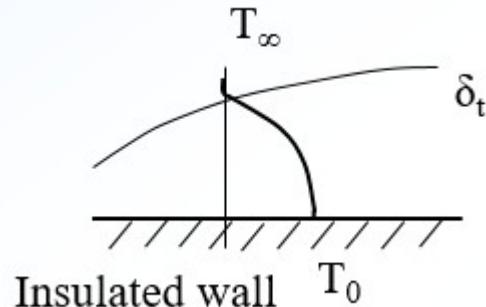
$$\text{Acoustic speed: } a = \sqrt{k R T}$$

$$\text{Mach number: } M = \frac{U}{a}$$

$$\left. \begin{aligned} \frac{T_0}{T} &= 1 + \frac{k-1}{2} M^2 \\ \text{Compression work is related to } M^2 \end{aligned} \right\}$$

$E \rightarrow M^2$ for both dissipation and compression

For gases M^2 replaces E



T_∞ : Fluid temperature away from the wall

T_0 : Wall temperature due to compression only

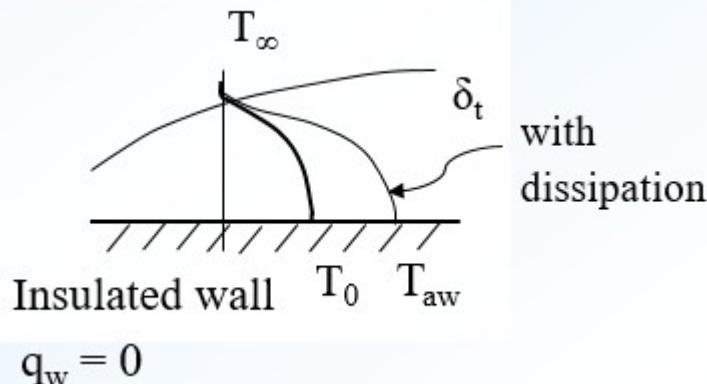
(Fluid particles coming to rest on the wall)

No friction, no heat transfer in the fluid

No viscous dissipation

No heat transfer, $q_w = 0$

$$\left. \begin{aligned} \frac{T_0}{T_\infty} &= 1 + \frac{k-1}{2} M^2 \end{aligned} \right\}$$



Actually:

T_{aw} : Wall temperature with viscous dissipation
and with heat transfer in the fluid

Define recovery factor:

$$r = \frac{T_{aw} - T_\infty}{T_0 - T_\infty}$$

- If no friction and no heat transfer $\rightarrow r = 1$
- If friction balances heat transfer $\rightarrow r = 1$
- If friction dominates $\rightarrow r > 1$
- If heat transfer dominates $\rightarrow r < 1$

Friction $\rightarrow \nu$

Heat transfer $\rightarrow \alpha$

$$r \rightarrow \text{Pr}$$

$$r = \text{Pr}^{1/2} \quad \text{Laminar}$$

$$r = \text{Pr}^{1/3} \quad \text{Turbulent}$$

$$\frac{T_{aw}}{T_\infty} = 1 + \frac{k - 1}{2} M^2$$

Therefore, use T_{aw} in $q = h (T_w - T_{aw})$

For air, $\sqrt{k R} \approx 20$ and $a \approx 20 \sqrt{T} \text{ (K)}$

The properties are to be evaluated at T^*

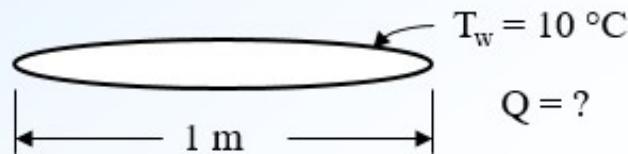
$$T^* = T_{\infty} + 0.5 (T_w - T_{\infty}) + 0.22 (T_{aw} - T_{\infty})$$

For h or Nu , use the low-speed relations, evaluated at T^* if $Re^* < 10^7$

For $Re^* > 10^7$, see other references.

Example 5

$U_{\infty} = 900 \text{ m/s}$ $P_{\infty} = 0.185 \text{ bar}$
 $T_{\infty} = -55 \text{ }^{\circ}\text{C}$ $\rho_{\infty} = 0.302 \text{ kg/m}^3$



$$a = \sqrt{k R T} \approx 20 \sqrt{T \text{ (K)}} = 20 \sqrt{218}$$

$$M = \frac{900}{20 \sqrt{218}} = 3.05$$

Altitude: 12 000 m

Assume turbulence $r = \text{Pr}^{1/3} = 0.9$ constant

$$T_{aw} = T_{\infty} \left[1 + r \frac{k - 1}{2} M^2 \right]$$

$$\left. \begin{aligned} T_{aw} &= 218 \left[1 + (0.9) (0.2) (3.05)^2 \right] \\ &= 583 \text{ K} = 310 \text{ }^{\circ}\text{C} \end{aligned} \right\}$$

$$\left. \begin{aligned} T_{aw} &= 310 \text{ }^{\circ}\text{C} \\ T_{\infty} &= -55 \text{ }^{\circ}\text{C} \end{aligned} \right\} \text{Wow!}$$

$$Q = h A (T_w - T_{aw}) = h (2 \text{ m}^2) (10 - 310) \Rightarrow h = ?$$

$$Nu = 0.036 Re^{0.8} Pr^{1/3}$$

Evaluate properties at T^* $T^* = -55 + (0.5)(10 + 55) + (0.22)(310 + 55) = 57 \text{ }^{\circ}\text{C}$

$$Re = \frac{U_{\infty} L}{\nu} \quad \nu = \frac{\mu}{\rho} \quad \rho = \frac{P}{R T} = \frac{(0.185 \cdot 10^5) (29 \cdot 10^{-3})}{(8.31) (330)} = 0.195 \text{ kg/m}^3$$

$$\nu \approx 10^{-4} \quad Re = 9 \cdot 10^6 \quad \text{turbulent but } < 10^7$$

$$Nu = 1.19 \cdot 10^4 \quad h = 332 \text{ W/m}^2 \cdot \text{K} \quad Q \approx 200,000 \text{ W/m}$$

Note the significance

