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9 - Forced  Convection  -  Internal  Flow

Pipe: Circular cross section

Tube: Small-diameter pipe

Duct: Non-circular cross section

The fluid velocity changes from zero at the surface (no-slip) to a maximum at the 

pipe center.

It is convenient to work with an average 

velocity, which remains constant in 

incompressible flow when the cross-

sectional area is constant.
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Average velocity:
.

m =  U  Aav c

For incompressible flow in a circular pipe of radius R:

0
2 2

0

 u(r) dA u(r) 2  r dr
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m =  =  =  u(r) r dr
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Average temperature: Define the value of the mean temperature, Tm
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

The mean temperature, Tm, (sometimes called bulk temperature, Tb, or mixing-

cup temperature) of the fluid changes during heating or cooling

Actual Idealized
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Flow in Tubes

For flow in a circular tube, the Reynolds number is defined as

 U  D U  D
Re  =  = av av

 

For flow through noncircular tubes, D is replaced by the hydraulic diameter, Dh

4 A
D  = 

P
c

h

Laminar flow:  Re < 2300

Transitional flow:  2300 ≤ Re ≤ 10,000

Fully turbulent flow :  Re > 10,000

Cros sectional area

Wetted perimeter
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Irrotational (core)
flow region

Boundary layer
region

All region is boundary layer

Hydrodynamic entrance region
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Hydrodynamic entrance region is the region from the pipe inlet to the point at 

which the boundary layer merges at the centerline.

Hydrodynamically fully developed region is the region beyond the entrance 

region in which the velocity profile is fully developed and remains unchanged.

The velocity profile in the fully developed region is

   – parabolic in laminar flow, and

   – somewhat flatter or fuller in turbulent flow.
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Thermal entrance region

Thermally fully developed region is the region beyond the thermal entrance 

region in which the dimensionless temperature profile expressed as (Ts-T)/(Ts-Tm) 

remains unchanged.
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Heat transfer coefficient and friction factor

Developing
region

Fully developed
region

Fully developed flow

either laminar or turbulent 

depending on Re
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Entry lengths

Laminar Flow

Hydrodynamic Lh,laminar = 0.065 Re D 

Thermal

Constant Tw Lt,laminar = 0.037 ReD Pr D 

Constant q’’ Lt,laminar = 0.053 ReD Pr D

Turbulent Flow

Hydrodynamic Lh,turbulent = 4.4 Re1/6 D 

Thermal Lt,turbulent = 10 D 
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Turbulent flow Nusselt numbers
The Nusselt numbers are much 

higher in the entrance region.

Nusselt number is insensitive to the type of thermal boundary condition.

The Nusselt number reaches a 

constant value at a distance of less 

than 10 diameters.

The Nusselt numbers for the 

uniform surface temperature and 

uniform surface heat flux conditions 

are identical in the fully developed 

regions, and nearly identical in the 

entrance regions.
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General Thermal Analysis

For steady flow in tubes:
.

Q = m c  (T  - T )p e i


The thermal conditions at the surface 

can usually be approximated as:

   – constant surface temperature, or

   – constant surface heat flux.

The mean fluid temperature at a cross 

section, Tm , must change during 

heating or cooling.

 Either Ts = constant or qs = constant at the surface of a tube, but not both.
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Constant Surface Heat Flux, qs

.

Q = m c  (T  - T )p e i


.
2m = A   U  =  R   Uc av av  

Q = q  A  = q  2  R Ls s s 

.

0

Q = m  c   dx
L

p

T

x




dT dTT
 =  =  = constant

x d d
s m

x x



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Constant Surface Temperature, Ts

.

Q = m  c  (T  - T )p e i


.
2m = A   U  =  R   Uc av av  

.

0

Q = m c   dx
L

p

T

x




Q = h A  LMTDs


T  - T
LMTD = 

T
ln

T

e i

e

i

 
 
  

LMTD: Log Mean Temperature Difference
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Laminar Flow in Tubes

Assumptions: Steady laminar flow;

Incompressible fluid;

Constant properties;

Fully developed region; and

Straight circular tube.

- The velocity profile u(r) 

remains unchanged in the 

flow direction.

- No motion in the radial 

direction.

- No acceleration.

2

max 2

r
u(r) = U  1 - 

R

 
 
 

maxU  = 2 U  av
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Pressure Drop

1 2 2 2

8  L U 32  L U
P = P  - P  =  = 

R D
av av 



2

1 2

 U
P = P  - P  =   

2
avL

f
D




Friction factor Dynamic pressure

64 64
f =  = 

 D U Reav



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Temperature Profile and Nusselt Number

Laminar, Fully-developed Flow

Constant surface heat flux, qs:

2 4

2 4

q  R 3 r r
T(r) = T -   -  + 

k 4 R 4 R
s  

 
 

h D
Nu =  = 4.36

k

Laminar, Fully-developed Flow

Constant surface temperature, Ts:

h D
Nu =  = 3.66

k



ME – 212   THERMO-FLUIDS ENGINEERING II 

Prof. Dr. Faruk Arınç Spring 2013

Laminar,

Fully-developed Flow

in Non-circular Tubes
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Developing Laminar Flow in the Entrance Region

For a circular tube of length L subjected to constant surface temperature, the 

average Nusselt number for the thermal entrance region (hydrodynamically 

developed flow), Sieder and Tate equation is:

For Flow between Isothermal Plates:

 
  2/3 2/3

0.0668 /  Re Pr 0.0668 Gz
Nu = 3.66 +  = 3.66 + 

1 + 0.04 Gz1 + 0.04 /  Re Pr

D L

D L  

 
  2/3

0.03 /  Re Pr
Nu = 7.54 + 

1 + 0.016 /  Re Pr

h

h

D L

D L  
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Turbulent Flow in Tubes

Friction Factor for Smooth Tubes: (Petukhov Equation)

2 6f = (0.79 ln(Re) - 1.64)      3000 < Re < 5 10

For Fully-developed Flow: (Dittus- Boelter Equation)

0.8Nu = 0.023 Re  Pr      Re > 10 000                n = 0.4  heating

                                      0.7  Pr  160         n = 0.3  cooling

n

 

These are approximately valid for developing turbulent flow in the entrance region

Modified correlations exists for other conditions such as liquid metals, surface 

roughness, property variations due to large temperature changes, etc.
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The Dittus-Boelter correlation may be used for small to moderate temperature 

differences, Twall – Tavg, with all properties evaluated at an averaged temperature, Tavg.

When the difference between the surface and the fluid temperatures is large, it may 

be necessary to account for the variation of viscosity with temperature. Therefore a 

modified form of Dittus-Boelter equation was proposed by Sieder and Tate (1936).

0.14

0.8

s

Nu = 0.027 Re  Pr      Re > 10 000                  n = 0.4  heating

                                                   0.7  Pr  16700       n = 0.3  cooling

                           

n 


 
 
 

 
L

                         > 10
D
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Example 1

Water at a temperature of 40 °C flows through a 2.5 cm OD smooth-walled tube at a 

rate of 0.5 kg/s. The tube wall is kept at 80 °C. Find h and Q if the length of the tube 

is 3 m. Assume that the velocity and temperature profiles are fully developed.

m = 0.5 kg/s

Tw = 80 °C

Tin = 40 °C

Solution

0.8 0.4Nu = 0.023 Re  Pr

For heating the fluid
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Evaluate properties at the bulk temperature
in out

b

T  + T
T  = 

2
outT  = ?

Assume a value for Tout and then iterate. 

in out
b

T  + T 40 + 60
T  =  =  = 50 C

2 2


outAssume  T  = 60 C

Properties of water at 50 °C 

ρ = 987 kg/m3              k = 0.646 W/m.K

μ = 5.5 10-4 kg/m.s      Pr = 3.5

cp = 4.176 kJ/kg.K 

0.8

0.8 0.4 0.4meanU  D
Nu = 0.023 Re  Pr  = 0.023  (3.5)      if turbulent 




 
 
 
 
 
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mean 2

m 0.5
U  =  =  = 1.032 m/s

 (0.025) A
(987) 

4




4mean
-4

U  D (1.032) (0.025)
Re =  =  = 4.6 10     > 2300   Turbulent

5.5 10
987




4 0.8 0.4
DNu  = 0.023 (4.6 10 )  (3.5)  = 205

2k 0.646
h = Nu  = 205  = 5298 W/m .K

D 0.025

Now check Tout

Q = h A T = (5928) ( ) (0.025) (3) (80 - 50) = 37449 W 

p out inQ = m c  (T  - T )
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p out in out in
p

Q 37449
Q = m c  (T  - T )   =>  T  = T  -  = 40 -  = 57.9 C

m c (0.5) (4179)




This is close enough to the first asumption 60 °C.

If not, repeat the calculation using the new Tout.
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Dimensional Analysis

This is for forced convection heat transfer in tube (pipe) flow.

Write down all the parameters that h depends on:   h = f(D, ρ, μ, cp, k, Um)

Assume that there is a power relation:   h = C (D)a (ρ)b (μ)c (cp)d (k)e (Um)f

Try to find all these powers, a, b, c, d, e, and f, by expresing every term in basic units 

first.

Basic units are:    Legth  :  L   (meters)

                             Mass  : m   (kilograms)

                             Time   : T   (seconds)

                             Temperature  :  θ   (°C)



ME – 212   THERMO-FLUIDS ENGINEERING II 

Prof. Dr. Faruk Arınç Spring 2013

The proper units of the terms in terms of these basic units:

Write down all the parameters that h depends on:   h = f(D, ρ, μ, cp, k, Um)

h (W/m2.K)   :  (M L2 T-3)  (L-2) (θ-1) =  M T-3 θ-1   

W : kg.m2/s3

D diameter or characteristic length   :   L   

ρ (kg/m3)   :   M L-3   

μ (kg/m.s)   :   M L-1 T-1  

cp (J/kg.K)   :  M L2 T-2  M-1  θ-1  =  L2 T-2 θ-1 

k (W/m.K)   :  M L2 T-3  L-1  θ-1  =  M L T-3 θ-1 

U∞ (m/s)   :   L T-1   
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Substitute in  h = C  Da  ρb  μc  cp
d  ke  (Um)f

M T-3 Θ-1  =  C  (L)a  (M L-3)b  (M L-1 T-1)c  (L2 T-2 θ-1)d  (M L T-3 θ-1)e  (L T-1)f  

The powers of the same units on both sides of the equation must be equal.

Mass  (M)  :  1 = b + c + e

Length  (L)  :  0 = a – 3 b – c + 2 d + e + f

Time  (T)  :  - 3 = - c – 2 d – 3 e - f

Temperature  (θ)  :  - 1 = - d - e

There are 6 unknowns but 4 

equations.

 Chose any two and express the 

other unknown powers in terms of 

these two.
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Chose, for example b and c, then using 

the above four equations find

d = b + c

e = 1 – b – c 

f = b

a = b - 1

Substitute in the original equation h = C  D(b – 1)  ρb  μc  cp
(b + c)  k(1 – b – c)  Um

b

Collect the terms with 

the same powers

b c

m p pU  D  c  c k
h = C   

k k D

    
   
   

Rearrange

b c

m p pU  D  c  ch D
 = C  

k k k

    
   
   

Nu Re Pr Pr

Call   m = b
          n = b + c    m n

Nu = C Re  Pr Re Pr = Pe    Peclet number
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Jean Claude Eugène Péclet

French physicist

1793 – 1857
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Reynolds Analogy

Remember laminar 

flow over a flat plate

- 1/2
f x xC  = 0.664 Re

1/2 1/3
x xNu  = 0.332 Re  Pr

1/3
x f x x

1
Nu  =  C  Re  Pr

2

This is a similarity between Nux and Cf x

Can we extend this result to other cases (what other cases?) so that we may use it 

to predict h?

+ +
2+ +

+ +

Du P 1
 =   +  u

Dt x Re


 



+
2+ +

+

DT 1 E
 =  T  +   

Dt Pe Re
 

If
+

+

P
  1

x






E  <<  1

+
2+ +

+

Du 1
 =  u

Dt Re


+
2+ +

+

DT 1
 =  T

Dt Re Pr


Equations are similar.Eckert number



ME – 212   THERMO-FLUIDS ENGINEERING II 

Prof. Dr. Faruk Arınç Spring 2013

+
2+ +

+

Du 1
 =  u

Dt Re


+
2+ +

+

DT 1
 =  T

Dt Re Pr


BC’s:
+

+

u (0) = 0

u ( ) = 1

BC’s:
+

+

T (0) = 1

T ( ) = 0

+

w

T - T
T  = 

T  - T




Same BC’s if  T+  →  1 – T+

If  Pr =1  then expect identical solution, i.e., 1 - T+ = θ+ →  u+

Then, there must be a relation between Cf and Nu, or h.

Let’s have a closer look at Cf and h.
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w
f

2

C  = 
1

  U
2



 

+

w w +
y=0 y=0

 U u
 =     =   

y L y

u     


 

+

f +
+y =0

2 u
C  =  

 U  L y


 




+

f +
+y =0

2 u
C  =  

Re y




 w

y=0

T
h T  - T  = - k 

y




     +
w w

w + +
++ y =0y =0

T  - T T  - TT θ
h T  - T  = - k   = k   

L y L y
 



 
 

+
+y =0

θ
Nu =  

y



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If  Pr =1,  then  u+ → θ    The profiles are identical. So

f

1
Nu =  C  Re

2 This is called Reynods analogy (for Pr = 1)

If  Pr ≠ 1,  then the profiles are similar, but not identical.

Known from the exact solution that 

3

t

Pr = 



 
 
 

+
1/30 t

+
t

+

0

θ
1

y /L
 =  =  = Pr

1u
/L

y

 










1/3
f

1
Nu =  C  Re Pr

2
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When is this Reynolds analogy used?

E << 1    →   Low-speed flow    (E is Eckert Number)

Flow over flat plates or aerodynamic shapes
+

+

P
  <<  1

x




Turbulent pipe flow, because mixing dominates both friction and heat transfer

Reynolds Analogy is not valid for
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Ernst R. G. Eckert

Austrian American Scientist

1904 - 2004
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Stanton Number:
Nu

St = 
Re  Pr

2/3
f 1/3

f

1 Nu
St  Pr =  C    or     = J

2 Re  Pr
1

J =  C
2

J is Colburn factor

This is called Colburn analogy

For average values of Cf, CD may be used as long as the drag is mainly due to 

skin friction.
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Sir Thomas Ernest Stanton

British Mechanical Engineer

1865 - 1931
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Allan Philip Colburn

American Chemical Engineer

1904 - 1955
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Example 2

Air flows over a NASA 2405 profile as shown. 

U∞ = 100 m/s

T∞ = - 40 °C

Tw = 20 °C

Evaluate properties of air

- 40 + 20
at   T =  = - 10 C

2


ν = 10.7 10-6 m2/s   

           

k = 0.023 W/m.K

Pr = 0.72

6

-6

(100) (1)
Re =  = 9.35 10

10.7 10

Find the drag coefficient, CD, 

using Re and an experimental Figure.

Find the heat flow rate, Q, in W/m.

 
-3

D 2

Total drag / (b) (L)
C   7.0 10  = 

1/ 2   U 



-3
f DC   C  / 2 = 3.5 10
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1/3 -3 6 1/3
f

1 1
Nu =  C  Re Pr  =  (3.5 10 ) (9.35 10 ) (0.72)  = 14665.4

2 2

2k 0.023
h = Nu  = (14665.4)  = 337.3 W/m .K 

L 1

Q = (335.3) (2) (1) (20 + 40) = 40 476.5 W

Note that purely hydrodynamic correlations are used.
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Example 3

D = 40 mm            Tin = 30 °C

L = 4 m                  Tout = ?

m = 0.25 kg/s

U∞ = 100 m/s

T ∞ = 225 °C

Water flows in a thin-walled tube, 40 mm OD, length 4 m. The inlet temperature of 

the water is 30 °C. Atmospheric air flows across the tube on the outside. The 

velocity and temperature of the air are 100 m/s and, 225 °C, respectively. 

Estimate the exit temperature of the water. 

Assume fully developed conditions for the internal flow of water.
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Assumptions:  -  Steady state

                        - Tube wall thermal resistance is neglected

                        - Fully-developed internal flow

                        - Constant properties

                        - Changes in KE, PE, flow-work are negligible

This is a typical trial-and-error solution. Assume a value for Tout; then check whether 

it is close enough to the correct value. If not, repeat the calculation with a new 

assumption for Tout.

Assume Tout = 70 °C First, evaluate properties at 

the average temperature

in outT  + T 70 + 30
 =  = 50 C

2 2

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Properties of water

at the average temperature

in outT  + T 70 + 30
 =  = 50 C = 315 K

2 2


ρ = 1/vf = 991.1 kg/m3

c = 4179 J/kg.K             k = 0.634 W/m.K

μ = 631 10-6 N.s/m2       Pr = 4.16

Properties of air, 1 atm

at T∞ = 225 °C = 315 K 

ν = 38.79 10-6 m2/s

k = 40.7 10-3 W/m.K

Pr = 0.684

Note that properties are evaluated at the free stream temperature. This is according to the 

relation given by Žukauskas.

Additional assumption: Use constant surface temperature, Ts.
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Algirdas Žukauskas

Lithuanian Scientist

1923 - 1997
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At any cross section, p mdQ = m c  dT

 x s mdQ = h  P dx T  - T

 m
x s m

p

dT P
 =  h  T  - T

dx m c

ΔT

 
x

0p

d T P
 = -  h  dx

T m c

T Lout

Tin






 

out

in p

T P L
ln  =  h

T m c

 
   

out

in p

T P L
 = exp  h

T m c

 
    

s m,out
s

s m,in p

T  - T P L
 = exp  h    ,   T  = constant

T  - T m c

 
  
 



ME – 212   THERMO-FLUIDS ENGINEERING II 

Prof. Dr. Faruk Arınç Spring 2013

     p s m,in s m,out p in out

s

Q = m c  T  - T  - T  - T  = m c  T  - T

    = h A  (LMTD)

     

Using these derivations:  
p

m,out out s s m,in

P L
 exp  h

m c
T  = T  = T  - T  - T

 
 
 

Replace Ts with T∞ and h with U  where 

i o

1
U = 

1 1
 + 

h h

 
p

m,out out m,in

P L
 exp  U

m c
T  = T  = T  - T  - T 

 
 
 
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Internal Flow:
4 m

Re =  = 12 611
 D  


4/5 0.4 2
i

k
h  =  0.023 Re  Pr  = 1230 W/m .K

D

External Flow:

1/4

m no

s

h  D Pr
Nu =  = C Re  Pr  

k Pr
 

 
 

5U  D
Re =  = 1031 10




Let Pr∞ = Prs

Use Table:  C = 0.26  ,  m = 0.6

                   n = 0.37 for Pr ≤ 10
2

oh  = 234 W/m .K

2

i o

1 1
U =  =  = 197 W/m .K

1 1 1 1
 +  + 

h h 1230 234
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 

 

p

m,out s s m,in

P L
 exp  h

m c

 (0.04) (4)
 exp  (197)

(0.25) (4179)

T  = T  - T  - T

        = 225 - 225 - 30  = 47.6 C


 
 
 
 
 
 





Find  Ts = 63.2 °C Find  Prs = 0.687 So   Pr∞ ≈ Prs

It checks.
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Example 4

In a pharmaceutical application, the product is subjected to a final sterilization by 

heating it from 32 ºC to 80 ºC. A flow of 60 cm3/s is passed through a 10-mm tube 

that is heated with a uniform heat flux produced by wrapping the tube with an 

electric resistance heater. If product properties can be approximated by those of 

ethylene glycol, and the tube is 25-m long. 

Determine.

a) the required power (in W); 

b) the wall temperature at 

the tube exit (in ºC). 
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The required heat transfer rate can be obtained from conservation of energy and the 

given information. The wall temperature at the tube outlet can be calculated using 

the basic rate equation ( q′′ = h ∆T).

Assumptions: 

1. The system is steady with no work or potential or kinetic energy effects. 

2. The liquid is ideal with constant specific heat.

(a) For conservation of energy on the liquid, assume steady, no work, no potential or 

kinetic energy effects, and an ideal liquid with constant specific heat so that 

enthalpy change = cp ∆T

 p out inQ = m c  T  - T 
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The properties required to calculate the 

heat transfer coefficient are evaluated 

avg

32 + 80
at   T  =  = 56 C  330 K

2


ρ = 1089.5 kg/m3

c = 2.549 kJ/kg.K        k = 0.260 W/m.K

μ = 56.1 10-4 N.s/m2       Pr = 55

 -6 3Q = (1089.5) (60 10 ) (2.549 10 ) 80 - 32  = 8 000 W

(b) For wall temperature

      at the tube outlet:

 s out s out

q''
q'' = h T  - T    =>   T  = T  + 

h

s out out

Q /A Q
T  = T  +  = T  +  

h  D L h

 

To calculate the heat transfer

coefficient, we need the Reynolds 

number:

  2

-6

 V D m
Re =      =>    V =  

 / 4  D

4 m 4 (1089.5) (60 10 )
Re =  =  = 1480

  D  (56.1 10-4) (0.01)


  

  




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Re = 1480 is laminar flow, so we

will check the entrance length 

entL   0.053 Re Pr D 

       0.053 (1480) (55.0) (0.01) = 43.2 m





This is significantly longer than the tube length, so the entrance effects must be 

taken into account. 

We do not have a correlation that gives the heat transfer coefficient for laminar, 

developing flow with a constant wall heat flux boundary condition. So, we will use the 

Seider and Tate correlation.

Assuming Ts ~ 350 K,  

µs = 34.2 10-4  N.s/m2 

0.14

1/3

s

0.141/3 -4

-4

Nu = 1.86 Gz  

(1480) (55.0) (0.01) 56.1 10
     = 1.86  

25 34.2 10

     = 6.37




 
 
 

  
     
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2Nu k (6.37) (0.260)
h =  =  = 166 W/m .K

D 0.01

s

8000
T  = 80 +  = 141.3 C

 (0.01) (25) (166)


Re-evaluating µs at 373 K (highest 

temperatures for which we have 

the properties):

µs = 21.5 10-4 N.s/m2

Nu = 6.80

h = 177 W/m2.K

Ts = 137.5 °C

The wall temperature will be lower than this, since µs should be smaller than with 

what we have available.
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10 – High Speed Flow

Effects of 

high speed

Viscous dissipation (E) cannot be neglected (for incompressible 

fluids)

Viscous dissipation (E) + work of compression (M) cannot be 

neglected (for compressible fluids)

Temperature gradients in the boundary layer becomes so large 

that properties of fluid vary significantly

There are number of techniques developed. We will not see them all. Instead, we 

will define an average temperature, Tav, in  w avq = h T  - T

Let’s examine two cases, incompressible fluid and compressible fluid.
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Incompressible fluid – Couette Flow

In fluid dynamics, Couette flow is the flow of a viscous fluid in the space between 

two surfaces, one of which is moving tangentially relative to the other with velocity 

U. The relative motion of the surfaces imposes a shear stress on the fluid and 

induces flow. 

U

y
u(y) = U 

L

L

+ +u y
u  =  =  = y

U L

+

+

u
 = 1

y




+ 1

2 1

 T - T
T  = 

T  - T
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It is named after Maurice Couette, a Professor of Physics at the French University 

of Angers in the late 19th century.

Non-dimensional 

energy equation:

+ + 2 + 2 +
+ +

2 2+ + + +

T T 1 T T E
u   + v   =   +  +  

x y Re Pr Rex y

    
 

     

0 0 0

2+

+

u
 = 

y

 
   

2 +

2+

T
 = - E Pr

y





If  E Pr = 0

If  E Pr > 1

1
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Compressible fluid

Dissipation   →    E What about compression work?

Assume:  No friction (no dissipation)
                No heat transfer (adiabatic compession)
                Perfect gas

Define T0, total or stagnation temperature

 
2 2

2 0
p 0 p p 0

p

T1 U U
 m U  = m c  T  - T     =>    c  T +  c  T     =>     = 1 + 

2 2 T 2 c  T

But  cp – cv = R   universal gas constant

p

p v

c1 k -1 1
 =      ,    = k  or     ,   k = 1.4 for air

c k R c


2
0T k - 1 U

 = 1 +  
T 2 k R T

  
  

   
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a = k R TAcoustic speed:

U
M = 

a
Mach number:

20T k - 1
 = 1 +  M

T 2

Compression work is related to M2

E   →   M2    for both dissipation and compression

For gases  M2 replaces  E

T∞: Fluid temperature away from the wall

T0: Wall temperature due to compression only

       (Fluid particles coming to rest on the wall)

       No fricton, no heat transfer in the fluid

No viscous dissipation

No heat transfer, qw = 0

20T k - 1
 = 1 +  M

T 2
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Actually:

Taw: Wall temperature with viscous dissipation

       and with heat transfer in the fluid

Define recovery factor:

aw

0

T  - T
r = 

T  - T




- If no friction and no heat transfer  →  r = 1

- If friction balances heat transfer  →  r = 1

- If friction dominates  →  r > 1

- If heat transfer dominates  →  r < 1

Friction  →  ν

Heat transfer  →  α  
r  →  Pr

r = Pr1/2   Laminar

r = Pr1/3   Turbulent

2awT k - 1
 = 1 +  M

T 2
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Therefore, use Taw in q = h (Tw – Taw)

For air,                       andk R  20 a  20 T (K)

The properties are to be evaluated at T*

w awT  = T  + 0.5 (T  - T ) + 0.22 (T  - T )
  

For h or Nu, use the low-speed relations, evaluated at  T*  if  Re* < 107

For  Re* > 107 , see other references.
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Example 5

Altitude: 12 000 m

Assume turbulence   r = Pr1/3 = 0.9  constant

2
aw

k - 1
T  = T  1 + r  M

2
 
  

a = k R T   20 T (K) = 20 218

900
M =  = 3.05

20 218

2
awT  = 218 1 + (0.9) (0.2) (3.05)  

      = 583 K = 310 C

  


awT  = 310 C

T  = - 55 C


Wow!
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   2
w awQ = h A T  - T  = h (2 m ) 10 - 310     =>    h = ? 

0.8 1/3Nu = 0.036 Re  Pr

Evaluate properties at T* T* = - 55 + (0.5) (10 + 55) + (0.22) (310 + 55) = 57 C

5 -3
3U  L P (0.185 10 ) (29 10 )

Re =      =       =  =  = 0.195 kg/m  
R T (8.31) (330)

 
 


4 6 7  10      Re  = 9 10      turbulent   but < 10   

4Nu = 1.19 10 2h = 332 W/m .K Q  200 000 W/m

Note the significance
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