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Simple Explicit Method:  

Given PDE:    uxx = ut    in non-dimensional form

u(x,0) = f(x)      0 ≤ x ≤ 1     Initial Condition  at  t = 0

u(0,t) = g(t)      t > 0

u(1,t) = h(t)      t > 0    

  

ui , j+1 = r ui-1 , j  + (1 – 2 r) ui , j  + r ui+1 , j

Stability Condition:

PARABOLIC  PDE’s

2 2

t k
where    r =  = 

( x) h




1
r   

2


Corresponding finite-difference equation:

Boundary Conditions 

     

2

2

u u
 = 

tx

 


?
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Example of a Parabolic Equation

A thin rod of length L extending between two 

plates is well insulated. 

The initial temperature distribution at t = 0 is f(x).

Suddenly two end plates are subjected to g(t) 

and h(t). 

PDE:
2

2

T(x,t) 1 T(x,t)
 =  

tx 
 


α: thermal diffusivity in m2/s
t: time in s

IC:  T(x,0) = f(x)    at t = 0  and  0 ≤ x ≤ L 

BC’s:  T(0,t) = g(t)    at x = 0  and  t > 0

           T(L,t) = h(t)    at x = L  and  t > 0

Let’s make these 

non-dimensional

WHY?
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Distinguish between dimensionless and non-dimensional

No dimension at all Ratio of the same dimensions

Why Non-dimensionalasion?  -  Dimensional analysis  -  Scaling

Non-dimensionalisation has several important uses:

1. It identifies the dimensionless groups (ratios of dimensional parameters) which 

control the solution behavior. Remember Re, Pr, Nu, Gr, St, Pe, etc.

2. Terms in the equations are now dimensionless and so allows comparison of their 

sizes. This allows the identification of the important (i.e. dominant) terms in the 

equations and their interaction in different regimes, giving insight into the structure 

of solutions and the dominant physical mechanisms at work. 
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2. In particular, negligible terms can be identified leading to simplification in many 

circumstances.

3. It allows estimates of the effects of additional features to the original model 

through the new dimensional group(s) associated with the additional term(s). This 

allows measurement of the effect of the physical feature(s) in the model.

4. It can reduce the number of parameters occurring in the problem by forming the 

non-dimensional parameters or dimensionless groups.

5. It facilitates the numerical solution of the mathematics (PDE) and its interpretation 

in the physical realm of the problem.

6. Others …
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Non-dimensional Parabolic Equation

Define non-dimensional parameters:

PDE:

2

2

2

+2 +

xx t

T 1 T
 =   

tx

T T
 =  

x t
T  = T


 


 
 

IC:  T(x+,0) = f(x+)    at t+ = 0  and  0 ≤ x+ ≤ 1 

BC’s:  T(0,t+) = g(t+)    at x+ = 0  and  t+ > 0

           T(1,t+) = h(t+)    at x+ = 1  and  t+ > 0

+ +
2

x
x  =     and    t  =  t

L L



+ 2 2

+ + 2 +2 2

T T dx T 1 T T 1
 =   =       =>    =  

x dx Lx x x x L

    
    

+

+ + 2

T T dt T
 =   =  

t dtt t L

  
  
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PDE:
2

xx t2

u u
 =     or     u  = u     ,     x and t are non-dimensional

tx

 


IC:  u(x,0) = f(x)    at t = 0  and  0 ≤ x ≤ 1 

BC’s:  u(0,t) = g(t)    at x = 0  and  t > 0

           u(1,t) = h(t)    at x = 1  and  t > 0

Replace the space derivative by central difference and time derivative by forward 

difference (WHY?):

i-1 , j i , j i+1 , j i , j+1 i , j
2

u  - 2 u  + u u  - u
       where  h = x  and  k = t

kh
  

Rearrange: ui , j+1 = r ui-1 , j  + (1 – 2 r) ui , j  + r ui+1 , j 2 2

t k
where    r =  = 

( x) h



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Remark on the stability condition:

The order of the simple explicit formula (truncation error) is

 O(k2 + k h2)   or   O(k2) + O(k h2)

These terms evaluated at  i,j  are:

2 2 2 4 2 2 4

2 4 2 4

k u k h u k u h u
  -   =  k  -  

2  t 12  x 2  t 6  x

    
     

Since   ut = uxx       =>    utt = uxxt = utxx = uxxxx    So,

2 2 2 4 2 2 4 2 4

2 4 2 4 4

k u k h u k u h u k h u
  -   =  k  -   =  k -  

2  t 12  x 2  t 6  x 2 6  x

       
          
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2 2 2 4 2 2 4 2 4

2 4 2 4 4

k u k h u k u h u k h u
  -   =  k  -   =  k -  

2  t 12  x 2  t 6  x 2 6  x

       
          

This shows that if k / h2 = 1 / 6,  then the truncation error will be  O(k3)  which is 

the same as  O(h6). So, if we choose  non-dimensional amplification factor as      

  r = 1 / 6,  the solution of the difference equation approaches the real solution with 

special rapidity.
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Example Problem:
2

2

u(x,t)  u(x,t)
 =      ,    0  x  1    ,   t > 0

 t x

 
 



Initial Condition:    u (x,0) = x (1 – x)      ,       0 ≤ x ≤ 1     ,   t = 0

Boundary Conditions:     u (0,t) = u (1,t) = 0       ,      t > 0

Exact solution using separation of variables:

2 2- (2n + 1)   t
3 3

n = 0

8 sin(2n + 1)  x
u (x,t) =    e

(2n + 1)








Numerical Solution:   Set   h = 0.2    ,    k = 0.01      ,    r = 0.25



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Fall 2021

The finite difference equation becomes:

  i, j+1  i-1, j  i, j  i+1, j

1
u  =  u  + 2 u  + u  

4

Initial Condition:   i, 0 i iu  = x  x  - 1      for  i = 0, 1, ..., 5 

Boundary Condition:  0, j  5, ju  = u  = 0     for  j > 0 

j u0,j u1,j u2,j u3,j u4,j u5,j

0 0 0.14 0.22 0.22 0.14 0

1 0 0.125 0.2 0.2 0.125 0

2 0 0.1125 0.1813 0.1813 0.1125 0
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STABILITY

Let L {U} = 0 given PDE

F {u i,j} = 0 Corresponding finite difference scheme

The finite difference scheme is said to be convergent (to the PDE) if  ui,j  tends to 

the exact solution  U(xi,yj) (or Ui,j) as  h  and  k  tend to zero.

The difference  di,j = Ui,j - (ui,j)*  is called the cumulative truncation (or discretization) 

error.  (u i,j )*  is the exact solution of the difference equation.

di,j  depends on grid sizes,  h  and  k,  as well as the number of terms used in the 

truncated series to approximate each partial derivative.
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The finite difference scheme and the PDE are said to be consistent if F{Ui,j}  tends 

to zero as  h  and  k  tend to zero.

If the exact finite-difference solution  (ui,j)*  is replaced by the exact solution of the 

PDE, Ui,j  at the grid point, Pi,j, then the value of F{Ui,j}  is called the local truncation 

error at  Pi,j .

Define r i , j  = (u i , j )
 * - u i , j 

where (u i , j )
 * is the exact solution of the difference equation

u i , j is the actual solution of the difference equation

r i , j  is called the round-off error
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The total error is U i , j - u i , j = U i , j - (u i , j )
 * + (u i , j )

 * - u i , j 

U i , j - u i , j = d i , j + r i , j 

Therefore,  di,j  is bounded when  ui,j  is bounded.

The finite difference algorithm is said to be stable if the round-off errors are 

sufficiently small for all  i  as  j    i.e., the growth of  r i , j  can be controlled.

Note that  ri,j  depends on type of computer used, the computational process, 

and on the finite-difference equation itself.



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Fall 2021

STABILITY CRITERION 

Lax's Equivalence Theorem:

Given a properly-posed, linear, initial-value problem and a finite-difference 

approximation to it that satisfies the consistency criterion, stability is the 

necessary and sufficient condition for convergence. 

Note that this statement needs to be interpreted

A general, second-order, linear, parabolic PDE looks like:

( , )  + b( , )  + c( , )  = d( , ) 
u u u

a x t x t x t u x t
x x x t

    
     
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Peter David Lax

Hungarian (American) Mathematician

1926 - 
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Let  ui,j  be the numerical (finite difference) solution, and  Ui,j  be the exact 

solution of the PDE.  The error is defined as

, , ,U  - u  = E  = E(x ,t )i j i j i j i j

The exact solution  U  has the form
1  x  t

1  i h  j k
,

U(x,t) = e  e

U(x ,t ) = U  = e  ei j i j

 

 





where  λ  is a real number and  α  can be a complex number 

The error  Ei,j  must therefore have the same form:
1  i h  j k

,E  = e  ei j
 
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 k    can be complexe   1    The Von Neumann criterion for stability is

This error

must stay finite (for stability) as  t (or  j) goes to infinity for all  α

1  i h  j k
,E  = e  ei j

 

Example:  Determine the stability condition for the simple explicit method 

ui , j+1= r ui-1 , j  + (1 – 2 r) ui , j  + r ui+1 , j 2 2

 t k
where    r =  = 

(  x) h




2

1
r   

 h
2 sin

2



 
 
 
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John von Neumann

Hungarian (American) Mathematician

1903 - 1957
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Substitute                                           into the finite difference equation 
1  i h  j k

i,ju  = e  e 

ui , j+1= r ui-1 , j  + (1 – 2 r) ui , j  + r ui+1 , j

1  i h  (j+1) k 1  (i-1) h  j k 1  i h  j k

1  (i+1) h  j k

e  e  = r e  e  + (1 - 2 r) e  e  

                            + r e  e

     

 

  



Cancel the same terms from both sides of the equality

  k 1  h 1  he  = 1 - 2 r + r e  + e    

 k 2  h
e  = 1 - 4 r sin   1

2
    

  2

1
r  

 h
2 sin

2



 
 
 

=>
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Given PDE:    Uxx = Ut    in non-dimensional form

2

2

U U
 = 

tx

 


ui , j+1 = r ui-1 , j  + (1 – 2 r) ui , j  + r ui+1 , j 2 2

t k
where    r =  = 

( x) h




Corresponding finite-difference equation (simple explicit method):

The finite difference scheme and the PDE are said to be consistent if F{Ui,j}  tends 

to zero as  h  and  k  tend to zero.

The finite difference scheme is said to be convergent (to the PDE) if  ui,j  tends to 

the exact solution  U(xi,yj) (or Ui,j) as  h  and  k  tend to zero.

Note that there are two time levels, j and j+1
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The finite difference algorithm is said to be stable if the round-off errors are 

sufficiently small for all  i  as  j    i.e., the growth of  r i , j  can be controlled.

 k    can be complexe   1    The Von Neumann criterion for stability is:

LAX’s equivalence therom:

Given a properly-posed, linear, initial-value problem and a finite-difference 

approximation to it that satisfies the consistency criterion, stability is the necessary 

and sufficient condition for convergence. 

1  i h  j k
,E  = e  ei j

 
Form of the exact solution, or the error, is:
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Note the following:

1. The method applies only if the coefficients of the linear difference equation 

are constant. For variable coefficients, the method can still be applied locally 

and it might be expected that the finite-difference solution will be stable if the 

Von Neumann condition, derived as though the coefficients were constant, is 

satisfied at every point in the solution field. There is much numerical 

evidence to support this.

2. For two-time-level difference schemes with one dependent variable and any 

number of independent variables, the Von Neumann condition is sufficient as 

well as necessary for stability. Otherwise, the condition is only necessary.
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3. Boundary conditions are neglected by the Von Neumann method which 

applies, in theory, to only pure initial-value problems with periodic initial data. 

It does, however, provide necessary condition for stability of constant-

coefficient problems regardless of the boundary conditions.
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IMPLICIT  METHODS – implicit in time

An implicit method is  the one in which two or more unknown values in the j+1th row 

are specified in terms of the jth row (and j-1, j-2, etc., if necessary) by a single 

application of the expression.

One simple implicit method is suggested by O’Brien, by approximaing the second-

order derivative, uxx, in the j+1th row insread of the jth row

PDE:
2

xx t2

u u
 =     or     u  = u     ,     x and t are non-dimensional

tx

 


i-1,j+1 i,j+1 i+1,j+1 i,j+1 i,j

2

u  - 2 u  + u u  - u
       where  h = x  and  k = t

kh
  

ui , j = - r ui-1 , j+1  + (1 + 2 r) ui , j+1  - r ui+1 , j+1 2 2

t k
where    r =  = 

( x) h



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Matthew O’Brien

Irish Mathematician

1814 - 1855
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Richardson’s Explicit Finite-Difference Scheme

Both derivatives are replaced by central differences.

i-1,j i,j i+1,j i,j+1 i,j-1

2

u  - 2 u  + u u  - u
   

2 kh


This is an attempt to improve the local truncation errors of the approximation for ut. 

This is also called overlapping-steps method. 

Note that it is a three-time-level formula

However, such a scheme is unstable for all values of r, or it is unconditionally 

unstable.

Prove that it is the case. 
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Lewis Fry Richardson

British Mathematician

1881 - 1953
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Du Fort-Frankel Explicit Algorithm

Replace ui,j with i-1,j i,j+1 i,j-1 i+1,j i,j+1 i,j-1

2

u  - u  - u  + u u  - u
   

2 kh


This is again a three-time-level formula, and it can be shown that it is stable for 

all values of r. (Prove this.)

i,j+1 i,j-1u  - u
 

2

However, it has the disadvantage that it requires a special starting procedure since 

one line of values (time step j = 1), in addition to the initial line (time step j = 0), 

must be known before the formula can be appllied.

This was proposed for linear diffusion equations with periodic boundary conditions 

by E.C. Du Fort and S.P. Frankel in 1953.
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Stanley Phillips Frankel

American computer scientist

1919 - 1978
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Crank-Nicolson Method

Replace ui,j with 

i,j+1 i,j i-1,j+1 i,j+1 i+1,j+1 i-1,j i,j i+1,j
2

u  - u u  - 2 u  + u u  - 2 u  + u1
 =   +   

k 2 2h

 
 
 

This is again a three-time-level formula, and it can be shown that it is stable for 

all values of r. (Prove this.)

i,j+1 i,j-1u  - u
 

2

i-1,j+1 i,j+1 i+1,j+1 i-1,j i,j i+1,j

1 1
u  - 2 1 + u  + u  = - u  - 2 1 - u  + u   

r r

    
    
    
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John Crank

British Mathematician

1916 - 2006
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Phyllis (Lockett) Nicolson

British Mathematician

1917 - 1968
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IMPLICIT  METHODS

-  r  λ ui-1 , j+1 + (1 + 2 r λ) ui , j+1 - r  λ ui+1 , j+1 

                                          =  r (1 – λ) ui-1 , j  + [1 – 2r (1 – λ)] ui , j + r ( 1 – λ) ui+1 , j 

If   λ  = 0          Explicit relation

     λ = 1           O’Brien et. al. formula

     λ = 1/2        Crank-Nicolson formula

Example:  Tri-diagonal coefficient matrix, stable for all r?

Matrix stability analysis !
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Example

xx tu  = u  PDE:

IC:  u(x,0) = 1   at t = 0

BC’s:  u(0,t) = 0   and  
x=1,t>0

u
 = 1 

x




Let  h = 1/3,  k = 1/6   so  r = k/h2 = 3/2  and  λ = 2/3 
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Example

xx tu  = u  PDE:

IC:  u(x,0) = sin(πx)   ,   t = 0   ,  0 ≤ x ≤ 1

BC’s:  u(0,t) = u(1,t) = 0   ,   t > 0  

Let  h = 0.2,  k = 0.05   so  r = k/h2 = 1.25  and  λ = 1/2   (Crank-Nicolson) 

Heat equation

Exact solution: 
2-  tu(x,t) = e  sin(  x)   

i-1,j+1 i,j+1 i+1,j+1 i-1,j i,j i+1,ju  - 3.6 u  + u  = - u  - 0.4 u  + u      i = 1, 2, 3, 4   ,   j > 0  FDE:

Initial condition (at t = 0, or j = 0):

     i,0 iu  = sin π x  = sin π i h  = sin 0.2 π i   ,   i = 0, 1, ..., 5
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Initial condition (at t = 0, or j = 0):

     i,0 iu  = sin π x  = sin π i h  = sin 0.2 π i   ,   i = 0, 1, ..., 5

u0,0 = 0.0000000

u1,0 = 0.5877853

u2,0 = 0.9510565

u3,0 = 0.9510565

u4,0 = 0.5877853

u5,0 = 0.0000000

For higher accuracy, use a lot 

more number of internal points, 

not 4, but 40, or 400, ...

Boundary conditions: 0,j 5,ju  = u  = 0   ,   j > 0

i-1,j+1 i,j+1 i+1,j+1 i-1,j i,j i+1,ju  - 3.6 u  + u  = - u  - 0.4 u  + u      i = 1, 2, 3, 4   ,   j > 0  FDE:



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Fall 2021

For i = 1

For i = 2

For i = 3

For i = 4

0,1 1,1 2,1 0,0 1,0 2,0u - 3.6 u  + u  = - u  - 0.4 u  + u  = - 0.71594  

1,1 2,1 3,1 1,0 2,0 3,0u - 3.6 u  + u  = - u  - 0.4 u  + u  = - 1.15842  

2,1 3,1 4,1 2,0 3,0 4,0u - 3.6 u  + u  = - u  - 0.4 u  + u  = - 1.15842  

3,1 4,1 5,1 3,0 4,0 5,0u - 3.6 u  + u  = - u  - 0.4 u  + u  = - 0.71594  

In matrix notation:

1,1

2,1

3,1

4,1

u-3.6    1        0        0   -0.71594
u 1     -3.6      1        0  -1.15842

   = 
 0       1      -3.6      1  u -1.15842

 0       0        1      -3.6 -0.71594u

   
   
   
  
       





 
 



J
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1,1

2,1 -1

3,1

4,1

u -0.71594 ...
u -1.15842 ...

  = J   = 
u -1.15842 ...

-0.71594 ..u

     
     
     
     
           

J matrix does not have any i’s or j’s. Therefore, it may be inverted once and for all, 

and used for the rest of the calculations.

1,2 1,1

2,2 2,1-1

3,2 3,1

4,2 4,1

u u ...
u u ...

  = J   = 
u u ...

..u u

     
     
     
     
             

1,3 1,2

2,3 2,2-1

3,3 3,2

4,3 4,2

u u ...
u u ...

  = J   = 
u u ...

..u u

     
     
     
     
             

How would you estimate the errors?
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More on Stability

xx tu  = u  PDE:

Simple Explicit Method: ui , j+1= r ui-1 , j  + (1 – 2 r) ui , j  + r ui+1 , j  ,   r > 0.5

One condition on time (IC) and two conditions on space (BC’s)

Crank-Nicolson Method:

i-1,j+1 i,j+1 i+1,j+1 i-1,j i,j i+1,j

1 1
u  - 2 1 + u  + u  = - u  - 2 1 - u  + u       ,    all r

r r

    
    
    

Given consistency (between the PDE and the FDE)

Prove stability  =>  convergence of FDE sol’n to PDE sol’n

How do you prove stability?

Lax’s equivalence 

theorem
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Given consistency (between the PDE and the FDE)

Prove stability  =>  convergence of FDE sol’n to PDE sol’n

How do you prove stability?

Lax’s equivalence 

theorem

Von Neumann stability criterion:
 k    can be complexe   1    

Substitute                                           into the finite difference equation (FDE)
1  i h  j k

i,ju  = e  e 

Remember the restrictions:
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1. The method applies only if the coefficients of the linear difference equation 

are constant. 

For variable coefficients, the method can still be applied locally and it might be 

expected that the finite-difference solution will be stable if the Von Neumann 

condition, derived as though the coefficients were constant, is satisfied at every 

point in the solution field. There is much numerical evidence to support this.

( , )  + b( , )  + c( , )  = d( , ) 
u u u

a x t x t x t u x t
x x x t

    
     
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2. For two-time-level difference schemes with one dependent variable and any 

number of independent variables, the Von Neumann condition is sufficient as 

well as necessary for stability. Otherwise, the condition is only necessary.

3. Boundary conditions are neglected by the Von Neumann method which 

applies, in theory, to only pure initial-value problems with periodic initial data. 

It does, however, provide necessary condition for stability of constant-

coefficient problems regardless of the boundary conditions.

i-1,j+1 i,j+1 i+1,j+1 i-1,j i,j i+1,j

1 1
u  - 2 1 + u  + u  = - u  - 2 1 - u  + u   

r r

    
    
    
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More on Stability – Physical Concern

xx tu  = u  PDE:

Simple Explicit Method: ui , j+1= r ui-1 , j  + (1 – 2 r) ui , j  + r ui+1 , j

Suppose that, at time step j: i-1 , j i+1 , j i , ju  = 25    ,   u  = 25    and     u  = 100  

It is expected that, at the next time step, ui,j+1 cannot be less than 25 and more 

than 100

The finite difference equation becomes: ui , j+1= r (25)  + (1 – 2 r) (100)  + r (25)

ui , j+1= (1 – 2 r) (100)  + r (50)

This shows that (1 – 2 r) cannot be negative: (1 – 2 r) > 0      =>    r < 1/2
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This shows that (1 – 2 r) cannot be negative: (1 – 2 r) > 0      =>    r < 1/2

For r = 1/2:  ui , j+1= 25     a limiting case

For r = 1:  ui , j+1= - 50     impossible

For r = 1/4:  ui , j+1= 50 – 50/4     possible

For r = 0:  ui , j+1= 100     the other limiting case
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Stability with BC’s – Physical Argument

PDE:
2

2

T T
 =       0 < x < L  ,  t > 0

t x
 

 

Difference Equation: Ti , j+1= r Ti-1 , j  + (1 – 2 r) Ti , j  + r Ti+1 , j

2

L t
x =      and    r =  

M x
 




Initial Condition:  T(x,0) = Ta    =>    Ti,0 = Ta 

Boundary Condition at x = 0:
c c

c

T
- k  + h  T(0.t) = h  T      or

x
T

- k  = h  (T  - T)
x









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Boundary Condition at x = 0
c c

c

T
- k  + h  T(0.t) = h  T      or

x
T

- k  = h  (T  - T)
x










Corresponding difference form:
1,j -1,j

c 0,j c

T  - T
- k  + h  T  = h  T  

2 h 

 
 
 

The difference equation at i = 0 becomes:

T0 , j+1= (1 – 2 r β0) T0 , j  + 2 r T1 , j  + 2 r γ0

where: c c
0 0

x h x h
 = 1 +     and      =  T

k k
  

 
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Suppose that, at time step j: 0 , j 1 , jT  = 100    ,   T  = 0    and     T  = 100  

Then, the nodal equation ( i = 0) becomes: T0 , j+1= (1 – 2 r β0) (100) 

This gives γ0 = 0.

T0, j+1 can only be between 0 and 100. Therefore, (1 – 2 r β0) ≥ 0 

c0

1 1
0 < r   = 

x h2 
2 + 2 

k



 

 
 

This is a more restrictive condition than r < 1/2. Use the smallest r.
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The Method of Lines

It applies to initial-value problems, and reduces a PDE to a system of ODE’s

Example

 t xx xu  = u  + cos(x) u  + sin(2 x) - cos(t + x)  u 

IC:    u(x,0) = x (1 - x)

BC's:    u(0,t) = 0

            u(1,t) = sin(t) 

Discretisize the space variable only. Leave the time variable as it is.

Set x = i h , i = 0,1, 2,..., n   where  h = 1 /(n+1)

Along each line (xi,t) for t > 0, we have a function ui(t).
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If h = 1/4

t

u(0,t) = u0(t) = 0
x=0

u1(t)

u2(t)

u3(t)

u(1,t) = u4(t) = sin(t)x=1

u(x,0) = x(1-x)

   0 1 2 2 01
12

u  - 2 u  + u u  - udu (t) 1
 =  + cos 0.25   + sin 0.5  - cos(t + )  u  

dt 2 h 4h

 
  

   1 2 3 3 12
22

u  - 2 u  + u u  - udu (t) 1
 =  + cos 0.5   + sin 1  - cos(t + )  u  

dt 2 h 2h

 
  

   3 2 3 4 4 2
32

du (t) u  - 2 u  + u u  - u 3
 =  + cos 0.75   + sin 1.5  - cos(t + )  u  

dt 2 h 4h

 
  
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u(x,0) = x (1 - x)Initial Conditions: 

1

2

3

u (0) = 0.25 (1 - 0.25) = 0.1875

u (0) = 0.5 (1 - 0.5) = 0.25

u (0) = 0.75 (1 - 0.75) = 0.1875  

   1 i i+1 i+1 i-1
i i i i2

du (t) u  - 2 u  + u u  - u
 =  + cos x   + sin 2 x  - cos(t + x )  u  

dt 2 hh
i i   

General Formula: 

Solve them simultaneously for all i.
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