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PARABOLIC PDE’s

Simple Explicit Method:
o’u _ au

Given PDE: u, =u, in non-dimensional form 2 ot

ux,0)=f(x) 0<x<1 Initial Condition at t=0
uO,t)=g(t) t>0 |

Boundary Conditions
u(t,t) =h(t) t>0

—

Corresponding finite-difference equation:

h A SR
=rui-1,j+(1_2r)ui,j+rui+1,j where 1= (AX)2 - h2

u

i 9+
1
2
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Example of a Parabolic Equation

Insulation Rod

A thin rod of length L extending between two

plates is well insulated.

The initial temperature distribution at t = 0 is f(x).

Suddenly two end plates are subjected to g(t)

and h(t).
PDE: O°T(x,t) _ 1 aT(x,t) a: thermal diffusivity in m#/s
2 o ot t: timeins

IC: T(x,0)=f(x) att=0 and O0<x<L Let's make these

_di ional
BC’s: T(0,t)=g(t) atx=0 and t>0 non-aimensiona

T(Lt)=h(t) atx=L and t>0 WHY?

Prof. Dr. Faruk Aring Fall 2021
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Distinguish between dimensionless and non-dimensional

L J L J
Y I

No dimension at all Ratio of the same dimensions

Why Non-dimensionalasion? - Dimensional analysis - Scaling
Non-dimensionalisation has several important uses:

1. It identifies the dimensionless groups (ratios of dimensional parameters) which

control the solution behavior. Remember Re, Pr, Nu, Gr, St, Pe, etc.

2. Terms in the equations are now dimensionless and so allows comparison of their
sizes. This allows the identification of the important (i.e. dominant) terms in the
equations and their interaction in different regimes, giving insight into the structure

of solutions and the dominant physical mechanisms at work.
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2. In particular, negligible terms can be identified leading to simplification in many

circumstances.

3. It allows estimates of the effects of additional features to the original model
through the new dimensional group(s) associated with the additional term(s). This

allows measurement of the effect of the physical feature(s) in the model.

4. It can reduce the number of parameters occurring in the problem by forming the

non-dimensional parameters or dimensionless groups.

5. It facilitates the numerical solution of the mathematics (PDE) and its interpretation

in the physical realm of the problem.

6. Others ...

Prof. Dr. Faruk Aring Fall 2021
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Non-dimensional Parabolic Equation

Insulation Rod
Define non-dimensional parameters:
x* =2 and t+=%t
_J_—; 9, | or_or & _or 1 _ 9T _oT |
< - ~"  ox o' odx  ax' L ox>  ox? L
=T,
' oT _ oT dtt _ T «
ot ot dt ot L2
T 1 T
x  a ot IC: T(x*,0)=f(x*) att*=0 and 0<x*<1
PDE: &°T _ 4T
xZ ot BC's: T(O,t") = g(t*) atx*=0 and t*>0

T = Ty T(1,t)=h(t") atx*=1 and t*>0
Prof. Dr. Faruk Aring Fall 2021
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‘ u, , xandtare non-dimensional

IC: u(x,0)=f(x) att=0 and 0<x=<1

BC’s: u(0,t)=g(t) atx=0 and t>0
u(1,t)=h(t) atx=1 and t>0

Replace the space derivative by central difference and time derivative by forward
difference (WHY?):

where h = Ax and k = At

At K

Rearrange: |u., ., =ru, +(1-2r)u u, where r= =
’ " ! e (A2 h?

Prof. Dr. Faruk Aring Fall 2021
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Remark on the stability condition:

The order of the simple explicit formula (truncation error) is

O(k2 + k h2) or O(k?) + O(k h?)

These terms evaluated at i,j are:

2 ot* 12 ox*

ot>* 6 ox’

k? 0u kh* do% _k {k 0°u  h? 84u}
2

Since u,=u, => Uu,=u,=U,=U So,

txx XXXX

2 ot* 12 ox*

ot* 6 ox’

K> o'u kh® du _k {k o°u  h’ 84u}=5 {k_ h? o‘u
2 2
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2 ot* 12 ox*

ot>* 6 ox’

k? 0u kh?* d% _k {k o’u  h? 84u}
2

This shows that if k / h? =1/ 6, then the truncation error will be O(k®) which is
the same as O(h®). So, if we choose non-dimensional amplification factor as
r=1/6, the solution of the difference equation approaches the real solution with

special rapidity.

Prof. Dr. Faruk Aring Fall 2021
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o’u(x.t) _ 2 u(x.t)

Example Problem:

0 X 0 t ’
Initial Condition: u (x,0)=x(1-x) Osx<1 , t=0
Boundary Conditions: u (0,t)=u(1,t)=0 , t>0

Exact solution using separation of variables:

8 ~ Sin(2n + 1) T X _(2n+1)2 72t
u((xt)= — e
0725 & ey

Numerical Solution: Set h=0.2 , k=0.01 . r=0.25

Prof. Dr. Faruk Aring Fall 2021
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The finite difference equation becomes:

1
Ui g = 2 (ui-1,j t2u;;+ ui+1,j)
Initial Condition: U, o =X (x;-1) fori=0,1,..,5
Boundary Condition: ~ Ug; =Us; =0 for j>0
J Uy, U, Uy, U Uy, Us,
0 0 0.14 0.22 0.22 0.14 0)
1 0 0.125 0.2 0.2 0.125 0
2 0 0.1125] 0.1813 | 0.1813 | 0.1125 0)

Prof. Dr. Faruk Aring
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'd:/download/gnp.txt" —

0.25 -
0.2
0.15
0.1

0.05

0
0.005
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STABILITY

Let L{U}=0 given PDE

F{u}=0 Corresponding finite difference scheme

The finite difference scheme is said to be convergent (to the PDE) if u;; tends to

the exact solution U(x,y,) (or U;)as h and k tend to zero.

The difference d;;=U;; - (u;;)" is called the cumulative truncation (or discretization)

error. (u ;)" is the exact solution of the difference equation.

di,j depends on grid sizes, h and k, as well as the number of terms used in the

truncated series to approximate each partial derivative.

Prof. Dr. Faruk Aring Fall 2021
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If the exact finite-difference solution (u;;)* is replaced by the exact solution of the

PDE, U;, atthe grid point, P,;, then the value of F{U, } is called the local truncation

errorat P;; .

The finite difference scheme and the PDE are said to be consistent if F{U, } tends

tozeroas h and k tend to zero.
Define roy=(u, ) -u,

where (U, ;)" s the exact solution of the difference equation

u, is the actual solution of the difference equation

Fii is called the round-off error

Prof. Dr. Faruk Aring Fall 2021
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The total erroris U, ,-u, ,=U, -(u,,;)" +(u; ;) -u,,

Therefore, d;; is bounded when u;; is bounded.

The finite difference algorithm is said to be stable if the round-off errors are

sufficiently small for all i as j — « i.e., the growth of r; ; can be controlled.

Note that r;; depends on type of computer used, the computational process,

and on the finite-difference equation itself.

Prof. Dr. Faruk Aring Fall 2021
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STABILITY CRITERION

Lax's Equivalence Theorem:

Given a properly-posed, linear, initial-value problem and a finite-difference

approximation to it that satisfies the consistency criterion, stability is the

necessary and sufficient condition for convergence.
Note that this statement needs to be interpreted

A general, second-order, linear, parabolic PDE looks like:

ou
ot

i( (x:t) a—u) +b(xt) 2+ c(xt) u = d(x.t)
OXx OX

OX

Prof. Dr. Faruk Aring Fall 2021
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Peter David Lax
Hungarian (American) Mathematician

1926 -

Prof. Dr. Faruk Aring Fall 2021



(D) ME - 510 NUMERICAL METHODS FOR ME Il

Let u; be the numerical (finite difference) solution, and U;; be the exact

solution of the PDE. The error is defined as

U, -y, =E,; = E(x,t,)

1,

The exact solution U has the form  U(x,t) = """ #* e
Ux,t;)=U,; = eV-12ih gaijk
where A is a real number and a can be a complex number

E =gV 14ih

ajk
The error E;; must therefore have the same form: ij e

Prof. Dr. Faruk Aring Fall 2021
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— gV 14ih gaik

This error  Ei €

must stay finite (for stability) as t (or j) goes to infinity for all a

Kk
The Von Neumann criterion for stability is ‘ea ‘ < 1 «a canbe complex

Example: Determine the stability condition for the simple explicit method

_ At _ K
U, =fu, ; +(1=2ru  +ru,, where r= N =12

1

2 sin? (th
2

Prof. Dr. Faruk Aring Fall 2021
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John von Neumann
Hungarian (American) Mathematician

1903 - 1957
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_ oV-12ih k. -y .
Substitute U;; = e/ 1A gl into the finite difference equation
U= MUy +(1=2r)u; ; +ru,,
eﬂzih e (+)k — reﬁ;t(i-nh ik 4 (1-27) eﬂzih e ik

+ reﬁz(iﬂ)h e ik

Cancel the same terms from both sides of the equality

oo K =1-2r+r(e_ﬁ’1h _l_eﬂ/zh)

‘e“k‘=‘1—4rsin2(%h)‘ <1 = r < 1/1h
25in2(7j

Prof. Dr. Faruk Aring Fall 2021
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o°U  ouU

ox? ot

Given PDE: U,_ =U, in non-dimensional form

Corresponding finite-difference equation (simple explicit method):

n Atk
=rui-1,j+(1_2r)ui,j+rui+1,j where r_(AX)2 _h2

u

i 7+
Note that there are two time levels, j and j+1

The finite difference scheme and the PDE are said to be consistent if F{U, } tends

to zeroas h and k tend to zero.

The finite difference scheme is said to be convergent (to the PDE) if u;; tends to

the exact solution U(x,y,) (or U;)as h and k tend to zero.

Prof. Dr. Faruk Aring Fall 2021
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LAX’s equivalence therom:

Given a properly-posed, linear, initial-value problem and a finite-difference

approximation to it that satisfies the consistency criterion, stability is the necessary

and sufficient condition for convergence.

The finite difference algorithm is said to be stable if the round-off errors are

sufficiently small for all i as j — « i.e., the growth of r; ; can be controlled.

E =g/ 14ih gaik

Form of the exact solution, or the error, is: ij e

k
The Von Neumann criterion for stability is: ‘ea ‘ < 1 «a canbe complex

Prof. Dr. Faruk Aring Fall 2021
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Note the following:

1. The method applies only if the coefficients of the linear difference equation
are constant. For variable coefficients, the method can still be applied locally
and it might be expected that the finite-difference solution will be stable if the
Von Neumann condition, derived as though the coefficients were constant, is
satisfied at every point in the solution field. There is much numerical

evidence to support this.

2. For two-time-level difference schemes with one dependent variable and any
number of independent variables, the Von Neumann condition is sufficient as

well as necessary for stability. Otherwise, the condition is only necessary.

Prof. Dr. Faruk Aring Fall 2021
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3. Boundary conditions are neglected by the Von Neumann method which
applies, in theory, to only pure initial-value problems with periodic initial data.
It does, however, provide necessary condition for stability of constant-

coefficient problems regardless of the boundary conditions.

Prof. Dr. Faruk Aring Fall 2021
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IMPLICIT METHODS - implicit in time

An implicit method is the one in which two or more unknown values in the j+1 row
are specified in terms of the | row (and j-1, j-2, etc., if necessary) by a single

application of the expression.

One simple implicit method is suggested by O’Brien, by approximaing the second-

order derivative, u_, in the j+1" row insread of the j row

Xxx?

o°u  éu . .
PDE: — =—_ or u,=u , xandtarenon-dimensional

OX ot

Uiqis1 = 2 Upjeq F Uiq g Uiivr ~ Ui

’ : = : where h = Ax and k = At
h? k
At K

U, =-TU, 4, +(1+20)u ,, -Ty, where r= = —

i+1, j+1 (AX)Z h2

Prof. Dr. Faruk Aring Fall 2021
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Matthew O’Brien
Irish Mathematician

1814 - 1855
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Richardson’s Explicit Finite-Difference Scheme

U g -2 U + U Uiivq = Uijq
h? 2 k

12

Both derivatives are replaced by central differences.

This is an attempt to improve the local truncation errors of the approximation for u..

This is also called overlapping-steps method.

Note that it is a three-time-level formula

However, such a scheme is unstable for all values of r, or it is unconditionally

unstable.

Prove that it is the case.

Prof. Dr. Faruk Aring Fall 2021
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Lewis Fry Richardson
British Mathematician

1881 - 1953
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Du Fort-Frankel Explicit Algorithm

u - U

|,j'1 u|—1,J o u|,J+1 = UI’J_,l + u|+1;J u|’J+1 = u

2 h? 2 k

ij+1 ij-1

Replace u;; with

12

This was proposed for linear diffusion equations with periodic boundary conditions
by E.C. Du Fort and S.P. Frankel in 1953.

This is again a three-time-level formula, and it can be shown that it is stable for

all values of r. (Prove this.)

However, it has the disadvantage that it requires a special starting procedure since
one line of values (time step j = 1), in addition to the initial line (time step j = 0),

must be known before the formula can be appllied.

Prof. Dr. Faruk Aring Fall 2021
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Stanley Phillips Frankel
American computer scientist

1919 - 1978
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Crank-Nicolson Method

u - U

. ij+1 = Uij1
Replace u;; with
’ 2
Ujor =Yy _ 1 Ui - 2 Uiy F U jug 4 Yy - 2U; + Uy,
k h? 2 2

This is again a three-time-level formula, and it can be shown that it is stable for

all values of r. (Prove this.)

1 1
Ui gjeq - 2 (1 N Fjui,jﬂ Ft Uqjeg = - {Um,j -2 (1 - Fjui,j B ui+1,jj|

Prof. Dr. Faruk Aring Fall 2021
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John Crank
British Mathematician

1916 - 2006
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Phyllis (Lockett) Nicolson
British Mathematician

1917 - 1968
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IMPLICIT METHODS

= F AU, P (T2 A) U, -1 AUy
=r(1=-Nu, ; +[1=2r(1=N]u ;+r(1=A) U,
If A=0 Explicit relation
A=1 O’Brien et. al. formula
A=1/2 Crank-Nicolson formula

Example: Tri-diagonal coefficient matrix, stable for all r?

Matrix stability analysis !

Prof. Dr. Faruk Aring Fall 2021
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Example
PDE uxx = ut
IC: u(x,0)=1 att=0
ou

BC's: u(0,t)=0 and — =1
OX =1 150

Let h=1/3, k=1/6 so r=k/h?2=3/2 and A=2/3

Prof. Dr. Faruk Aring Fall 2021
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Example

Insulati = '
nsulation Rod PDE: Uy, = Uy Heat equation

IC: u(x,0)=sin(trx) , t=0 , 0<x<1

BC's: u(0,t)=u(1,t)=0 , t>0

Exact solution: u(x,t) = e ! sin(z Xx)

Let h=0.2, k=0.05 so r=k/hz2=1.25 and A =1/2 (Crank-Nicolson)

FDE:  Uiqjer = 3:6 Ujjq F Uppqjuq = - [ui-1,j -04uy, + ui+1,j:| 1=1,2,3,4 , |>0

,j+1

Initial condition (att =0, orj=0):
u, =sin(mx) =sin(mih) =sin(0.2mi) , i=0,1,..,5

Prof. Dr. Faruk Aring Fall 2021
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Initial condition (att =0, orj = 0):

U, =sin(mx;) =sin(mih) =sin(0.2mi) , i=0,1,...,5

Upo = 0.0000000
U, = 587785

1 et 3 For higher accuracy, use a lot
U,, = 0.9510565 | |
Uy, = 0.9510565 more number of internal points,
U, = 0.5877853 not 4, but 40, or 400, ...
Us o = 0.0000000

Boundary conditions; Up; =Us; =0 , j>0

i-1,j+1 ij+1

FDE: U = 3.6 Ujjq F Uiqjuq = - [Um,j -0.4 u;; + ui+1,j:| 1=1,2,3,4 , j>0

Prof. Dr. Faruk Aring Fall 2021
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Fori=1
Fori=2
Fori=3
Fori=4

In matrix notation:

Prof. Dr. Faruk Aring

UO’1' 3.6 U1,1 + U2’1 - - |:UO’0 = 0.4 u1,0 + UZ’O

U1’1_ 3.6 U2,1 + U3,1 = =
U2’1_ 36 U3’1 + U4’1 —

Ugq-3.6Uyq +Ugy =-

_U»]’O = 0.4 UZ,O + U3’O

]
}

(U - 0.4 Ugg + Uy, | =-1.15842
J

_u3,0 = 0.4 U4’0 + u5,0

-3.6 1 0 0 Us 1 -0.71594
1 36 1 0 | |Uy| |-1.15842
0 1 -36 1 ||u,| |[-1.15842
0 0 1 -36)(u,) \-0.71594

=-0.71594

=-1.15842

=-0.71594

Fall 2021



(D) ME - 510 NUMERICAL METHODS FOR ME Il

Uy 4 -0.71594
Uy | _ o [-1:15842 | _
Us 4 -1.15842
Uy 0.71594

J matrix does not have any i's or j's. Therefore, it may be inverted once and for all,

and used for the rest of the calculations.

Uj 5 U, 4 Uy 3 U, ,
u u U, 3 Uy 5
22 | _ 1 | Y21 | _ = _
U3 2 U3 1 u3,3 u3 2
Uy o Uy 4 Uss Uy 2

How would you estimate the errors?

Prof. Dr. Faruk Aring Fall 2021
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More on Stability
PDE: uxx n ut

One condition on time (IC) and two conditions on space (BC’s)

Simple Explicit Method:  u;, ;.= Tru r>0.5

; t(1=2r)u ; +ru,

i+1,j ?

Crank-Nicolson Method:

Uigjeq = 2 (1 N ;jui,jﬂ FUigjer = - {Um,j -2 (1 § ;jui,j + ui+1,j:| , allr

Given consistency (between the PDE and the FDE) Lax’s equivalence

Prove stability => convergence of FDE sol'n to PDE sol'n theorem

How do you prove stability?

Prof. Dr. Faruk Aring
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Given consistency (between the PDE and the FDE) Lax’s equivalence

Prove stability => convergence of FDE sol'n to PDE sol'n theorem

How do you prove stability?

_ J1iih _ajk . . .
Substitute  U;; =gV 141 ga] into the finite difference equation (FDE)

a Kk
Von Neumann stability criterion: ‘e ‘ < 1 «a canbe complex

Remember the restrictions:

Prof. Dr. Faruk Aring Fall 2021
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1. The method applies only if the coefficients of the linear difference equation

are constant.

0 ou ou ou
— a(x,t) — | + b(x,t) — + c(x,t) u =d(x,t) —
8x( (%) 8x] (%) OX (xt) (%) ot

For variable coefficients, the method can still be applied locally and it might be
expected that the finite-difference solution will be stable if the Von Neumann
condition, derived as though the coefficients were constant, is satisfied at every

point in the solution field. There is much numerical evidence to support this.

Prof. Dr. Faruk Aring Fall 2021
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2. For two-time-level difference schemes with one dependent variable and any
number of independent variables, the Von Neumann condition is sufficient as

well as necessary for stability. Otherwise, the condition is only necessary.

1 1
Ui gjpq - 2 (1 i Fjui,jﬂ Ft Uqjeg = - {Um,j - 2 (1 - Fjui,j i ui+1,j:|

3. Boundary conditions are neglected by the Von Neumann method which
applies, in theory, to only pure initial-value problems with periodic initial data.
It does, however, provide necessary condition for stability of constant-

coefficient problems regardless of the boundary conditions.

Prof. Dr. Faruk Aring Fall 2021
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More on Stability — Physical Concern

PDE: Ux = U

Simple Explicit Method: u,,,,=ru_ , +(1=-2r)u; , +ru,,

Suppose that, at time stepj: U4 ;=25 , Uy ;=25 and u; ;=100

It is expected that, at the next time step, U;;. cannot be less than 25 and more

than 100

The finite difference equation becomes: u;,,,,=r(25) +(1-2r) (100) + r (25)
U, = (1=271)(100) +r(30)

This shows that (1 — 2 r) cannot be negative: (1-2r)>0 => r<1/2

Prof. Dr. Faruk Aring Fall 2021
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This shows that (1 — 2 r) cannot be negative: (1-2r)>0 => r<1/2

Forr=1/2: u

i 7 j+1

=25 alimiting case
Forr=1: u,,,,=-50 impossible

Forr=1/4: u.

i7j+1

=50-50/4 possible

Forr=0: u;,,,,=100 the other limiting case

Prof. Dr. Faruk Aring Fall 2021
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Stability with BC’s — Physical Argument

oT _  o°T
PDE: — =& —

= —7 0<x<L, t>0
X

Difference Equation: T,,,,=rT, , +(1=-2nT,, +rT

i+1, ]
L At

AX=— and r=a« =1
M AX

Initial Condition: T(x,0)=T, => T,=T,

-k Z—T +h, T(0.t)=h, T, or
X
Boundary Condition at x = 0: oT
-k —=h_ (T, -T)

OX

Prof. Dr. Faruk Aring Fall 2021
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oT

-ka—+h TO.t)=h_ T, or
X
Boundary Conditionatx=0 oT
-k Y =h, (T, -T)
X

T -T..
Corresponding difference form: -k { 1’12 " ”} the Toj=h T,

The difference equation at i = 0 becomes:
T, i1 =(1-2 rBO)TO,j +2 rT1,j +27r1Y,

AX h, AX h,
» and y, =

where: g, =1+

Prof. Dr. Faruk Aring Fall 2021
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Suppose that, at time stepj: T, ;=100 , T, ,=0 and T, =100
This gives y, = 0.
Then, the nodal equation (i = 0) becomes: T,,,,=(1—-2rf,) (100)

Ty, +1 can only be between 0 and 100. Therefore, (1-2r ;)20

O<r < 1 = L

2 f3, 2+2(AxhCJ
K

This is a more restrictive condition than r < 1/2. Use the smallest .

Prof. Dr. Faruk Aring Fall 2021
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The Method of Lines

It applies to initial-value problems, and reduces a PDE to a system of ODE’s

Example
U, = U, +cos(x)u, + [sin(2 x) - cos(t + x)| u
IC:  u(x,0)=x(1-x)
BC's: u(0,t)=0
u(1,t) = sin(t)

Discretisize the space variable only. Leave the time variable as it is.

Setx=ih,i=0,1,2,...,n where h=1/(n+1)
Along each line (x,t) for t > 0, we have a function u(t).

Prof. Dr. Faruk Aring Fall 2021
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Ifh=1/4 " u(1,t) = u,(t) = sin(t)
Us(t)
u(x,0) = x(1-x) u,(t)
Uy (t)
<=0 »
u(0,t) = uy(t)=0
du,(t) _ Y -2y +u, | cos(0.25) Uz Yo sin(0.5) - cos(t + 1) u,
dt h? 2h .
du,(t) _ u, -2u, +u, Us - u, . 1
= + cos(0.5 + | sin(1) - cos(t + —
dt h? 05) =25 n(1) -cos(t+ 2)] v
dus(t) _ u, -2 uy +u, u, -u, . 3
= + cos(0.75) —=——= + |sin(1.5) - cos(t + —
dt h? 0.75) =5n n(1:8) -cosit ) v

Prof. Dr. Faruk Aring
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Initial Conditions:  (x 0) = x (1 - x)
u,(0) = 0.25 (1-0.25) = 0.1875
u,(0)=0.5(1-0.5)=0.25
u;(0) =0.75 (1-0.75) = 0.1875

General Formula:

du;(t) _ u,4-2u +u u

dt h?

112+ [sin(2x,) - cos(t +x,) | u

“1 + cos(X;) i

Solve them simultaneously for all i.

Prof. Dr. Faruk Aring Fall 2021
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