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PDE  -  INTRODUCTION

Finite difference approximations for derivatives were already in use by Euler in 1768. 
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For two dimensional systems, the first computational application of finite difference 

methods was probably carried out by Runge in 1908. He studied the numerical 

solution of the Poisson equation:
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The algebraic solution of finite difference approximations is best accomplished by 

some iteration procedure. Certain classes of problems (equations) have natural 

numerical solutions which may be distinct from finite difference methods. 

Physical Classification of PDE’s: 

The majority of problems in physics and engineering fall naturally into one of 

the three physical categories:

1. Equilibrium problems;

2. Eigenvalue problems; and

3. Propagation problems. 
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1. Equilibrium Problems

These are steady-state problems in which equilibrium 

configuration, U, in a solution domain, D, is to be 

determined by solving  L{U(x,y)} = f  within D,  subject to 

certain Boundary Conditions (BC's)   Bi{U} = gi  on 

boundary of D.  Very often, integration domain, D, is 

closed and bounded. Such problems are called 

boundary-value problems. 

Solution Domain   D

L{U} = f

B {U} = g
i i

Typical examples are:

Steady viscous flow

Steady temperature distribution 

Equilibrium stresses in elastic structures

Steady voltage distributions



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Spring 2025

This can be tought as extension of equilibrium problems wherein critical values of 

certain parameters are to be determined in addition to a corresponding steady-state 

configuration.

Find    and  corresponding  U  to satisfy this equation within domain  D  and the  

BC‘s hold on the boundary of  D.

Bİ {U} =  Eİ {U}

Examples:

Buckling and stability of structures 

Resonance in acoustics and electrical circuits 

Natural frequency problems in vibrations 

2. Eigenvalue Problems
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3. Propagation Problems

These problems are also known as initial 

boundary value problems
L{U} = f

BC

BC

I {U} = h
i i

Examples:

Propagation of pressure waves in a fluid

Propagation of heat

Propagation of stresses and displacements

Propagation of stresses in elastic systems and self 
excited vibrations
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Mathematical Classification: 

ODEs:

u'(x) = u

xu'' + 2 x u = e

2u'' + x (u')  + sin(x) = ln(x)

First order, linear

Second order, linear

Second order, non-linear

 F x, y, u, u', u'', ...  = 0 General Form

An equation that relates the independent variable x, the dependent 

variable u and derivatives of u is called an ordinary differential equation. 

Some examples of ODEs are:
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PDE’s:

 x yF x, y, u, u , u  = 0 General Form

A partial differential equation (PDE) contains partial derivatives of the 

dependent variable, which is an unknown function in more than one 

variable x, y, . . . .

We will be primarily concerned with PDEs in two independent variables.

A solution to the PDE is a function u(x,y) which satisfies the general form 

for all values of the variables x and y.

Some examples of PDEs (of physical significance) are:

Note that one of the independent variables, x or y, can be time, t.
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x yu  + u  = 0 Transport equation

t xu  + u u  = 0 Inviscid Burger’s equation

xx yyu  + u  = 0 Laplace equation

tt xxu  - u  = 0 Wave equation

t xxu  - u  = 0 Heat equation

t x xxxu  + u u  + u  = 0 KdV (Korteweg–de Vries) equation

t xxi u  - u  = 0 Shrödinger’s equation
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Mathematical Classification of Second-Order PDE’s
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where  a, b, c,  and  f  are all functions of  x, y, u, ux, and  uy,  in general. The 

directional derivatives of  ux  and  uy  must also exist, i.e.,

d (ux) = uxx d x + uxy d y

d (uy) = uxy d x + uyy d y

In matrix notation:  
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Consider the second order equation:

a uxx + b uxy + c uyy = f (x, y, u, ux, uy)
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The solution for  uxx,  uxy,  and  uyy  exists, and it is unique unless the determinant of 

the coefficients matrix vanishes: 

a (d y)2 - b (d y) (d x) + c (d x)2 = 0 

This is called the characteristic equation.

If b 2 - 4 a c > 0 Hyperbolic PDE Two real solutions

b 2 - 4 a c = 0 Parabolic PDE Only one real solution

b 2 - 4 a c < 0 Elliptic PDE No real solution

“Solution” means relation(s) between what are supposed to be unrelated (or 

independent) variables, x and y.
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Why are we looking for a relation (or relations) between what are supposed to be 

independent variables, x and y? In other words, why are we trying to find a 

dependence between independent variables? 

The objective (reason) to find such a relation is to change the PDE to an ODE when 

this relation is true. In other words, over what is called a characteristic curve (given 

by that relation), it possible to make such a change. ODE’s may have exact 

solutions. If not, it is at least easer to numerically solve an ODE (remember R-K 

order 4).

That is why only the Hyperbolic type PDE’s (that has two real solutions, or two 

relations, or two real curves, or two characteristic curves, or two characteristics 

between the independent variables, x and y) can be changed into ODE’s.

Parabolic and Elliptic type PDE’s cannot be changed into ODE’s.
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Examples:

Transient heat conduction equation

Propagation -  Parabolic
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Steady heat conduction equation 

Equilibrium - Elliptic
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Compressible fluid flow or

Vibration of a string

Eigenvalue - Hyperbolic

2 2

2 2 2
1

U 1 U
 =  

 x c  t

 
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Replace all partial derivatives (in the PDE and the conditions) with equivalent 

finite differences.
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Finite  Differences:

D
Discrete Approximation

Continuous domain, D
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Finite  Differences:

Partial derivatives can be approximated by finite differences in many ways.

Forward Difference:

2 2 3 3
4

2 3

 U U U
U(x+ x , y) = U(x,y) + x       + O( x ) 

 x 2! 3! x  x

x x    
    

  

 U U(x+ x , y) - U(x,y)
 =  + O( x) 

 x x

 


 

1, ,

,

U  - U U
 =  + O(h) 

 x h
i j i j

i j






ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Spring 2025

Backward Difference: , 1,

,

U  - U U
 =  + O(h) 

 x h
i j i j
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Central Differences:
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If  h = k:

2 2
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Note that these are the common approximations, but not the only ones.
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First Derivatives
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Note that, using central differences, we get better accuracy with two-terms than 
we do with four terms using forward differences.



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Spring 2025

Second Derivatives
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Numerical Solution Methods of PDE’s:

 Finite Differences – simplest to learn and use 

 Finite Elements  

 Finite Volumes  

 Gradient discretization

 Spectral methods – often use fast Fourier transforms

 Method of lines

 Mesh free methods

 Domain decomposition

 Multigrid

 Others

widely used in engineering and 

in computational fluid dynamics
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