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RUNGE-KUTTA  METHODS

yn+1 = yn + h f (tn , yn) Euler's Method: 

Heun's Method     y, (t f   y, t f   ) y, (t f  
2

h
   y y nnn1nnnn1  n  

The Runge-Kutta Order 4  ) K  K2   K2  (K 
6

h
   y y 4321n1  n 

K1 = f (tn , yn)  )K 
2

h
  y  ,  

2

h
  (t f  K 1nn2   ) K

2

h
    y,  

2

h
  (t f  K 2nn3 

 ) Kh    y, (t f  K 3n1  n4   h  or Δt

1. How to choose?   

2. Why constant and uniform?

3. How to find the total (overall) error?
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Richardson’s Extrapolation

Extrapolating Polynomials

1
0 1f(x) = a  + a  x  + a  x  + .... 


p p

p p

0      first-order approximation to f(x)f(x)  a    

How do you find a better approximation to f(x)?

Remember Taylor series expansion
where (x - xo) is replaced by x

“Richardson’s Extrapolation to the Limit” or “Deferred Approach to the Limit”:

Finding a more accurate answer using two inaccurate ones (estimates).

Remember Romberg integration table.

This is applicable to evaluation of functional values, derivatives, integrals, 

solution of differential equations, etc.
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Lewis Fry Richardson

English mathematician

1881 – 1953
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Compute f(qx) where  0 > q > 1:     1

0 1f(qx) = a  + a  q x  + a  q x  + .... 



p p

p p

Solve for  ap xp:  1( ) ( )
a  x  =  + O x

1



p p

p p

f x f qx

q

Substitute:  1
0

( ) ( )
a  = f(x) -  + O x

1



p

p

f x f qx

q

1
0 1f(x) = a  + a  x  + a  x  + .... 


p p

p p

Richardson’s

formula

Higher order approximation to f(0)
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Example:

xe  - 1
f(x) =     ,    f (0)  ?  

x


At x = 0.25:
0.25e - 1

f(0.25) =  = 1.1361017    =>   13.6 % error
0.25

At x = 0.0125:
0.125e - 1

f(0.125) =   1.0651876   =>   6.5 % error 
0.125



At x = 0: 0

f(0.25) - f(0.125)
f(0)  a   f(0.25) - 

1 - (0.5)

                  0.9942736   =>   0.6 % error

 



Exact solution: f(0) = 1

Richardson’s

formula
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Richardson’s Extrapolation for Derivatives:

2

( ) = ( ) +  '( ) +  ''( )
2!

h
f x h f x h f x f 

( ) ( )
'( ) =    ''( )         ,           

2

f x h f x h
f x f x x h

h
  

   

First-order approximation O(h)

Find a better approximation to the first derivative, f(x):

2( ) ( )
'( ) =    '''( )         ,           

2 3!

f x h f x h h
f x f x h x h

h
   

    

Second-order approximation O(h2)
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2 4 6
2 4 6

( ) ( )
'( ) =   a  h  + a  h  + a  h  + ...

2 

f x h f x h
f x

h

  


Define:
( ) ( )

( ) =  
2 

f x h f x h
h

h
   

Find: 0
 ( ) 

h
Lim h


2 4 6
2 4 6( ) = '( ) - a  h  - a  h  - a  h  - ...h f x

2 4 6

2 4 6

h h h
 = '( ) - a   - a   - a   - ...

2 2 2 2

h
f x        

       
       

Eliminate the terms with a2:

 
 42

'( ) =  +  + O h
2 3

h
h

h
f x

 


      
 
 
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Given f(x) = e-x , find  f ‘(0)  using second-order evaluation and Richardson’s formula

Exact solution:  f ‘(0) = - e-x f ‘(0) = - 1.000000

Choose h = 0.1 f ’(0.1) = - e0.1 = - 1.10517    =>   10.5 % error

f ’(- 0.1) = - e- 0..1 = - 0.90484    =>   10.5 % error

(0.1) ( 0.1)
'(0)    - 1.00167     =>    0.15 % error

2 (0.1)

 
 
f f

f

Use Richardson’s extrapolation formula:

Example:
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h = 0.1 f ’(0.1) = - e0.1 = - 1.10517    =>   10.5 % error

f ’(- 0.1) = - e- 0..1 = - 0.90484    =>   10.5 % error

(0.1) ( 0.1)
'(0)    - 1.00167     =>    0.15 % error

2 (0.1)

 
 
f f

f

Use Richardson’s 

extrapolation formula:

h = 0.05 f ’(0.1) = - e0.05 = - 1.05127    =>   5 % error

f ’(- 0.1) = - e- 0..05 = - 0.95123    =>   5 % error

'(0.05) '( 0.05)
'(0)    - 1.00042     =>    0.04 % error

2 (0.05)

 
 
f f

f

 4'(0.05) '(0.1)
'(0) = '(0.05) +  + O h

3

f f
f f
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Use Richardson’s extrapolation formula:

 4'(0.05) '(0.1)
'(0) = '(0.05) +  + O h

3

f f
f f

1.00042 1.00167
'(0) 1.00042 +  1.0000

3

 
   f

Almost the exact answer
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A  GENERAL  DICTUM  IN  NUMERICAL  MATH.

If anything at all is known about the errors in a process, that knowledge can be 

exploited to improve the process.

2 k
2 k

k 1

(h)  L - a  h  




 
L: Objective to be evaluated (can be derivative,
    definite integral, etc. 

 (h): Known function of chosen  h 

n

h
D (n , 1)      ,    n  1, 2, 3, ...

2
    
 

2 

n
k 1

h
D (n , 1)  L   A (k , 1)   

2

k



    
 



Procedure:  Select a convenient h, compute numbers

First estimates of L Objective - a2k
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 m) , 1-(n  D
1 - 4

1
 - m) , (n  D

1 - 4

4
  1)m , (n D

mm

m

Richardson’s Extrapolation
for derivatives

D (1 , 1)

D (2 , 1) D (2 , 2)

D (3 , 1) D (3 , 2) D (3 , 3)

D (4 , 1) D (4 , 2) D (4 , 3) D (4 , 4)

 Accuracy increases as we move down the table in any column because  h  is 

decreased by half at each step.

 Accuracy increases as we move to the right in any row because of order-of-

magnitude decrease in  h.

 Note that smaller  h  does not always leads to higher accuracy. The accumulation 

of round-off error eventually catches up with the process.
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21.640426 dx  2 dx   (x) f 
4

0

x
4

0

 Exact solution: 

Richardson's extrapolation table:

Start with Trap Rule

One Panel (n = 1) 34.0

Two Panels  (n = 2) 25.0 22.0

Four Panels  (n = 4) 22.5 21.666 21.6444

Percent Errors:

One Panel (n = 1) - 57.1 %

Two Panels  (n = 2) - 15.5 % - 1.7 %

Four Panels  (n = 4) - 4.0 % - 0.12 % - 0.02 %

Richardson’s Extrapolation
for Integrals:

Example:

m

m

4 1
T (n , m 1)   T (n , m) -  T (n - 1 , m) 

4  - 1 4  - 1
 

m
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 ... 3, 2, 1, k     ,     
2

0.25
  h

1 -k 


Given ODE:

Use Euler's method with : 

 1      y(0), y     -  y)f(t,  
 td

 yd


Exact solution: y (0.25) = 0.7788008 

Richardson’s Extrapolation for Solving ODE’s:

p+m-1

1

2 ( , ) ( 1, )
A (k , m 1)    

2  - 1 

 
 

p m

A k m A k m
Richardson’s recursive formula:

Example:
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N Richardson's extrapolation table

1 0.75

2 0.765625 0.78125

4 0.772476 0.7793274 0.7786865

8 0.7756999 0.7789236 0.778789 0.7788036

N Percent Errors

1 3.7

2 1.7 - 0.3

4 0.8 - 0.07 0.015

8 0.4 - 0.02 0.0015 - 0.00036
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Selecting step size, h:

Given ODE:   y )    y(t,      y),(t  f  
 td

 yd
00 

Exact (unknown) solution at  tn:   y )y(t *
n 

Local error from step  tn-1  to  tn  with step size h1:
p 1

local 1E   C h 

Numerical solution of order p at tn:
1p

1
*

h , n h C   yy
1



Repeat the numerical solution with step size :
2

h
 h 1

2 

Numerical solution of order p at tn: 2

* p 1
n , h 2y  y   2 C h  
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1p
1

*
h , n h C   yy

1


2

* p 1
n , h 2y  y   2 C h  

Combine these two equations and solve for  y*: 1 2

p
n , h n , h*

p

y  - 2  y
y    

1 - 2


Error in  yn , h1:
 

2 1

1

p
n , h n , h* p 1

local n n , h 1p

2  y  - y
E   y  - y     C h

2  - 1
  

2 1

p
n , h n , h

p p 1
1

y  - y2
C    

2  - 1 h  2 1

p
n , h n , hp 1 p 1

local,max max maxp p 1
1

y  - y2
E   C h       h   

2  - 1 h
 

  

 
2 1

1
p p 1

max 1 p
n , h n , h

 2  - 1
h   h   

2  y  - y

  
 
  

Maximum step size for the local error
not to exceed  ε.
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The above procedure is rather expensive when we want to check h at every step 

of the calculation. We need to have an inexpensive method with less number of 

calculations.

Consider two methods of order p and q such that  p+1 ≤ q

Subtract side by side:

)O(h  h A   yy 2p1p
1p

*
np , n


 

)O(h  h  B  yy 2q1q
1q

*
nq , n


 

Define:

p 1 p 2
n , q n , p p 1y  - y   A  h   O(h ) 

 

Therefore: n n , q n , pE   y  - y   This is the local error in yn,p
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Runge-Kutta-Fehlberg Order 4

 F 
5

1
 - F 

4104

2197
  F 

2565

1408
  F 

216

25
h   y  y 5431n1 n 






 

 )y , (t f  F nn1   Fh  
4

1
  y ,h  

4

1
  t f  F 1nn2 






 

 Fh  
32

9
  Fh  

32

3
  y  ,h   

8

3
  t f  F 21nn3 






 







  321nn4 Fh  

2197

 7296
  Fh  

2197

7200
  Fh  

2197

1932
  y  ,h   

13

12
  t f  F







  4321nn5 Fh  

4104

845
 - Fh  

513

3680
  Fh  8  Fh  

216

439
  y  ,h    t f  F
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Runge-Kutta-Fehlberg Order 5

 F 
55

2
  F 

50

9
 - F 

56430

28561
  F 

12825

6656
  F 

135

16
h   y  y 65431n1 n 






 

 )y , (t f  F nn1   Fh  
4

1
  y ,h  

4

1
  t f  F 1nn2 






   Fh  

32

9
  Fh  

32

3
  y  ,h   

8

3
  t f  F 21nn3 






 







  321nn4 Fh  

2197

7296
  Fh  

2197

7200
  Fh  

2197

1932
  y  ,h   

13

12
  t f  F







  4321nn5 Fh  

4104

845
 - Fh  

513

3680
  Fh  8  Fh  

216

439
  y  ,h    t f  F







  54321nn6 Fh  

40

11
 - Fh  

4104

1859
  Fh  

2565

3544
  Fh  2  Fh  

27

8
  y  ,h   

2

1
  t f  F
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Multi-step Methods

Multi-step (multi-procedure) methods require information on the solution of more 

than one point, and hence they are not self-starting.

- They are however more efficient (faster) than R-K methods.

- You may even hope that they may solve the instability problem of R-K methods.

Example using Euler’s method:

  2
0 0 n+1 n n n

1 0 0 0

dy(t)
 = f t,y(t)   ,   y(t ) = y       =>      y  = y  + h f(t ,y ) + O(h )

dt
                                                             y   y  + h f(t ,y )

                                          



2 1 1 1                   y   y  + h f(t ,y )

                                                             etc.



If y1 is also known (besides y0), what can you do for a better estimation of y2?

Local error



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Spring 2025

Example using Euler’s method:

  0 0 1 1

2

dy(t)
 = f t,y(t)   ,   y(t ) = y   and  y(t )  y

dt
                              y  = ?



Somehow known very accurately, maybe 
from a very accurate numerical calculation

Find y2 (and the rest of the points, y3, y4, etc.) fitting a first degree polynomial to 

f(t0,y0) and f(t1,y1), extend to the next panel, and find the area.

 2 1 1 1 0 0 1 1 0

h h
y  = y  +  3 f(t ,y ) - f(t ,y )  = y  +  (3 f  - f )

2 2

n+1 n n n-1

h
y  = y  +  (3 f  - f )     ,     n = 1, 2, 3, ...

2

Local truncation error:
3

local

5
E  =  h  f''( )

12
 How do you find this?
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 dy
 = f t,y

dt

0t 1t 2t

t

0f

1f

 f t,y

A

h

   1 1 0 1 0

h h
A = h f  + f  - f  = 3 f  - f

2 2

h

 2 1 1 1 0

h
y  = y  + A = y  + 3 f  - f

2

2 1y  = y  + A 

n+1 n n n-1

h
y  = y  +  (3 f  - f )

2
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n+1 n n n-1

h
y  = y  +  (3 f  - f )     ,     n = 1, 2, 3, ...

2

n+1 n n n-1 n-2

h
y  = y  +  (23 f  - 16 f  + 5 f )     ,     n = 2, 3, 4, ...

12

n+1 n n n-1 n-2 n-3

h
y  = y  +  (55 f  - 59 f  + 37 f  - 9 f )     ,     n = 3, 4, 5, ...

24

Order two:

Order three:

Order four:

Adams-Bashfort Open Formulae:

)('' f h 
12

5 3 Local truncation error:

Local truncation error:

Local truncation error:

)(''' f h 
24

9 4 

)(f h 
720

251 (4)5 

=>    O(2)

=>    O(3)

=>    O(4)
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ADAMS-BASHFORT OPEN FORMULAE

)(' f h 
2

1 2 

2

3

2

1
 - )('' f h 

12

5 3 

12

23

12

16
 -

12

5
)(''' f h 

24

9 4 

24

55

24

59
 -

24

37

24

9
 - )(f h 

720

251 (4)5 

720

1901

720

2774
 -

720

2616

720

1274
 -

720

251
)(f h 

1440

475 (5)6 

1440

4277

1440

7923
 -

1440

9982

1440

7298
 -

1440

2877

1440

475
 - )(f h 

60480

19087 (6)7 

Order of the 
Formula (n)

k = 1
 n1

k = 2
 n 2

k = 3
 n 3

k = 4
 n 4

k = 5
 n 5

k = 6
 n 6

Local Truncation 
Error, O(hn+1)

1 1

2

3

4

5

6

)O(h  f h   y  y 1n
n

1 k 
1k-inki1i




  



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Spring 2025

EXAMPLE ON MULTI-STEP METHODS

IC:  y(0) = 1 

   Exact Solution: y(t) = e sin(t)

Use Heun's method to start and 3-point Adams-Bashfort open formula to proceed:

d y
  y cos(t) 

d t


Heun's Method  n  1 n n n n 1 n n n

h
y   y     f (t  , y )   f t  , y + h f (t  , y  

2     

 p
n 1 n n n-1 n-2

h
y   y    23 f  - 16 f   5 f  

12   

Adams-Bashfort open order 3:
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t y (t) Heun's

Exact y n % Error

0 0 1.0

0.25 1.28070 1.27639 0.34

0.5 1.61515 1.60492 0.63

0.75 1.97712 1.95996 0.87

1.0 2.31978 2.29591 1.03

1.25 2.58309 2.55358 1.14

1.5 2.71148 2.67858 1.21

1.75 2.67510 2.64153 1.25

2.0 2.48258 2.45139 1.26
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t y (t) Heun's Adams-Bashfort

Exact y n % Error y n % Error

0 0 1.0 1.0

0.25 1.28070 1.27639 0.34

0.5 1.61515 1.60492 0.63

0.75 1.97712 1.95996 0.87 1.97172 0.27

1.0 2.31978 2.29591 1.03 2.32236 - 0.11

1.25 2.58309 2.55358 1.14 2.58942 - 0.25

1.5 2.71148 2.67858 1.21 2.71148 - 0.04

1.75 2.67510 2.64153 1.25 2.66317 0.45

2.0 2.48258 2.45139 1.26 2.45679 1.04
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Note that, the order of the starter method is better be greater than the order of 

the rest of the solution in order to reduce the beginning errors which may 

accumulate later on.

This is not so in the above example.

Example: Error calculation of Adams-Bashfort open formulae: 

Prove the following

  3
1 1

h 5
y  = y  +  3 f  - f  +  h  f ''( )

2 12n n n n  

  4
1 1 2

h 9
y  = y  +  23 f  - 16 f  + 5 f  +  h  f '''( )

12 24n n n n n   
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Predictor-Corrector Procedures

The idea behind the predictor-corrector methods is to use a suitable combination of 

an explicit and an implicit technique to obtain a method with better convergence 

characteristics.

1 n ny  = y  + h f(t ,y )p
n nPredictor:

Corrector: 1 n n n+1 1

h
y  = y  +  f(t ,y ) + f(t ,y

2
c p
n n n   

Here is an example using Euler’s method:
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f2

Find f2 and y2 

using f0 and f1

Recalculate y2 

with f1 and f2

Predictor

Corrector

  f - f 3 
2

h
  y  y 1-nnn

p

1n 

  f  f 
2

h
  y  y n

p

1nn

c

1n  
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Order of the 
Formula (n)

k = 1
 n1

k = 2
 n 2

k = 3
 n 3

k = 4
 n 4

k = 5
 n 5

k = 6
 n 6

Local Truncation Error, 
O(hn+1)

1 1

2

3

4

5

6

ADAMS CLOSED FORMULAE

)O(h  f h   y  y 1n
n

1 k 
1k-inki1i




  

)(' f h 
2

1
 - 2 

2

1

2

1 )('' f h 
12

1
 - 3 

12

5

12

8

12

1
 - )(''' f h 

24

1
 - 4 

24

9

24

19

24

5
 -

24

1
)(f h 

720

19
 - (4)5 

720

251

720

646

720

264
 -

720

106

720

19
 - )(f h 

1440

27
 - (5)6 

1440

475

1440

1427

1440

798
 -

1440

482
1440

173
 -

1440

27
)(f h 

60480

863
 - (6)7 
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Order Predictor-Corrector Formulae Local Error

2

3

4

ADAMS-MOULTON PREDICTOR-CORRECTOR METHODS

  f - f 3 
2

h
  y  y 1-nnn

p

1n 

  y - y 
6

1
  E c

1n

p

1n1n  
  f  f 

2

h
  y  y n

p

1nn

c

1n  

  f 5  f 16 - f 23 
12

h
  y  y 2-n1-nnn

p

1n 

  y - y 
10

1
  E c

1n

p

1n1n  

  f - f 8  f 5 
12

h
  y  y 1-nn

p

1nn

c

1n  

  f 9 - f 37  f 59 - f 55 
24

h
  y  y 3-n2-n1-nnn

p

1n 

  y - y 
270

19
  E c

1n

p

1n1n  

  f  f 5 - f 19  f 9 
24

h
  y  y 2-n1-nn

p

1nn

c

1n  
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ILL-conditioned ODE:
2d y 2

  3 y - t      ,    y(0) =  
d t 27



General solution:
2

3 t 2 t 2
y(t)  C e  +  +  +  

3 9 27
t

Particular solution:
2t 2 t 2

y(t)  +  +  
3 9 27

 Parasitic solution

Example:
1

2 1

du
  2 u (x)    ,   u (0) = 3 

dx
 2

1 2

du
  2 u (x)    ,   u (0) = - 3 

dx


General Solution:
2x -2x

1u (x)  A e  + B e 2x 2
2u (x)  A e  - B e x

Apply initial conditions: A = 0  and B = 3

The component with the positive exponential will dominate with any numerical 

method
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Stiff ODE: Any ODE with a rapidly decreasing transient solution requires an 

extremely small step size for an accurate solution.

 dy(t) dg(t)
   y(t) - g(t)  +      ,    0   and   g(t) smooth and slowly varying 

d t d t
  

Solution:   λty(t)  y(0) - g(0)  e  + g(t)  h must be very very small

Will soon be insignificant besides g(t)

But, (λ h) will govern the stability. So h must be small as well.

For any resonable h for g(t) will give small (λ h).



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Spring 2025

For a system of equations 

the eigenvalues of A correspond to λ. If all the eigenvalues have negative real parts, 

the solution will converge to g(t) as t goes to infinity.  

 dy(t) dg(t)
 = A y(t) - g(t)  + 

dt dt

Example:
du dv

 = 98 u + 198 v        = - 99 u + 199 v
dt dt

Exact solution:

- t -100 t

- t -100 t

u(t) = 2 e  - e

v(t) = - e  + e Rapidly decaying terms 
requiring a very small step size

One answer to stiff ODE’s is to use implicit methods:  n+1 n n+1 n+1y  = y  + h f t ,y  
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There exist other methods of solving ODE’s which we will not discuss in detail.

One such method is called Bulirsch-Stoer method. It combines two ideas:

1. Richardson’s extrapolation to the limit; and 

2. Rational function (Padé) approximation rather than power (Taylor) series.

See the book «Numerical Recipies».
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SYSTEM  OF  ODE’s

1
1 2 1 1,0

d h (t)
 = - 2 h  + h     ,    h (0) = h

d t
2

1 2 2 2,0

d h (t)
 = h  - 2 h     ,    h (0) = h

d t
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Consider:   0

d y(x)
 = f x, y(x), z(x)       ,    y(0) = y

d x

  0

d z(x)
 = g x, y(x), z(x)       ,    z(0) = z

d x

All the methods that we have discussed so far are applicable.

Euler’s Method:  1y  = y  + h f x , y , zn n n n n

 1 = z  + h g x , y , zn n n n nz 



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Spring 2025

The Runge-Kutta Order Four:  1 1 2 3 4

h
y  = y  +  K  + 2 K  + 2 K  + K

6n n

 1 1 2 3 4

h
z  = z  +  L  + 2 L  + 2 L  + L

6n n

 1K  = f x , y , zn n n  1L  = g x , y , zn n n

2 1 1

h h h
K  = f x + , y + K , z + L

2 2 2n n n
 
 
 

2 1 1

h h h
L  = g x + , y + K , z + L

2 2 2n n n
 
 
 

3 2 2

h h h
K  = f x + , y + K , z + L

2 2 2n n n
 
 
 

3 2 2

h h h
L  = g x + , y + K , z + L

2 2 2n n n
 
 
 

 4 1 3 3K  = f x , y +h K , z + h Ln n n  4 1 3 3L  = g x , y +h K , z + h Ln n n
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Example:

The Kermack - McKendrick model for the course of an epidemic in a population is 

given by the system of ODE’s:

1
1 2

dy
 = - c y  y

dt
2

1 2 2

dy
 = c y  y  - d y

dt
3

2

dy
 = d y

dt

where y1 represents the number of people susceptible to the disease, y2 represents 

infected people that are still in circulation, and y3 represents infected people that are 

removed from the population through isolation, death, or recovery and immunity. 

The parameters c and d represent the infection rate and removal rate, respectively.

Use the parameter values c = 1 and d = 5, along with initial values y1(0) = 95, y2(0) = 

5, and y3(0) = 0.



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Spring 2025

Use a numerical method of your choice (not Euler’s method) to find y1(t), y2(t) , and 

y3(t) (t is in months) and plot all on the same graph. You may use any suitable step 

size, h, such as h = 0.1.

 1
1 2 1 1 2 3 1,0

dy
 = - y  y  = f t , y  , y  , y    ,   y  = 95

dt

 2
1 2 2 2 1 2 3 2,0

dy
 = y  y  - 5 y  = f t , y  , y  , y    ,   y  = 5

dt

 3
2 3 1 2 3 3,0

dy
 = 5 y  = f t , y  , y  , y    ,    y  = 0

dt

Choose h = 1/30 (one day) and Heun’s method (Runge-Kutta order two).
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y3(t) – no longer infected

t, days

y1(t) - susceptible
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Examples of System of First-order ODE’s

 Predator-prey systems (Rabbits and Foxes)

 Chemistry and biochemistry (Chemical rate equations)

 Dilution problems

 Coupled spring-mass systems

 Electrical circuits

 SIR model of an epidemic (Susceptible, Infected, Recovered)

 Growth and decay problems

 Temperature problems

 Trajectories of planets, comets, etc.
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HIGHER-ORDER  ODE’s

 
2

2

d y(x)
 = f x, y(x), y'(x)

d x
Second-order ODE:

Two conditions must be specified for the solution: 

At  x = 0    y(0) = y0   and   

0

d y
 = y'(0)

d x x

Initial-value problem

At  x = 0    y(0) = y0   and   
Boundary-value problem

At  x = L    y(L) = yL 

Note that derivative conditions may also be specified at the boundaries
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SECOND-ORDER ODE   -   INITIAL VALUE PROBLEM

 
2

2

d y(x)
 = f x, y(x), y'(x)

d x
At  x = 0    y(0) = y0   and   

0

d y
 = y'(0)

d x x

Define  
0

dy(x)
 = z(x) = g(x, y, z)     ,     z(0) = z

d x

  0

dz(x)
 = f x, y(x), z(x)     ,    y(0) = y

d x

All the methods that we have discussed so far are applicable.
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SECOND-ORDER ODE   -   INITIAL VALUE PROBLEM

Given: y '' = - y y (0) = 0 y '(0) = 1

Exact solution: y (t) = sin(t) y '(t) = cos(t)

t 0 0.1 0.2 0.3 0.4 0.5 1.0

yexact 0 0.0998 0.1987 0.2955 0.3894 0.4794 0.8415

yEuler 0 0.100 0.200 0.299 0.396 0.440 0.940

y 'exact 1.0 0.995 0.980 0.995 0.921 0.878 0.540

y 'Euler 1.0 1.0 0.990 0.970 0.940 0.900 0.660
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BOUNDARY-VALUE  PROBLEMS

 
2

2

d y(x)
 = f x, y(x), y'(x)

d x
Second-order ODE:

At  x = 0    y(0) = y0   and   

Boundary-value problem
At  x = L    y(L) = yL 

Note that derivative conditions may also be specified at the boundaries

There are two methods of solution:   Matrix Method  -  f is a linear function of y

                                                                                       and all the derivatives of y

                                                          Shooting Method -  A trial-and-error solution
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Matrix Method

     
2

2

d y(x)
 = f x, y(x), y'(x)       ,     y a  =       ,      y b  = 

d x
 Given:

Select a set of equally-spaced points, x0, x1, ..., xn, xn+1, on the interval [a,b]

b - a
x  = a + i h      ,     h =       ,      0  i  n + 1 

n + 1i  

Approximate the derivatives using standart central-difference formula

     ' 1 1
y x + h  - y x - h y  - y

y x    =  
2 h 2 h

  i i

       '' 1 1
2 2

y x + h  - 2 y x  + y x - h y  - 2 y  + y
y x    =  

h h
  i i i
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The problem becomes:

0

1 1 1 1
2

y  =     (given)

y  - 2 y  + y y  - y
 = f x , y ,       ,     1  i  n 

2 hh

y =     (given)

       
 

i i i i i
i i





This is usually a non-linear system of equations in n unkowns, y1, y2, ..., yn.

The solution of such a sytem of non-linear equations is seldom easy. 

IF the “f” function is linear in y and y’, only then the solution is easier

because we can form a matrix:
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First derivatives with finite differences:

 ' i 1y  - y
y x    + O(h)

h
i

 ' 1y  - y
y x    + O(h)

h
i iTwo-point forward difference

Two-point backward difference

Three-point forward difference

Three-point backward difference

Three-point central difference  ' 2i+1 1y  - y
y x    + O(h )

2 h
i

 ' 2i 1 i+2- 3 y  + 4 y  - y
y x    + O(h ) 

2 h
i

 ' 2i-2 1 iy  - 4 y  + 3 y
y x    + O(h ) 

2 h
i

Five-point central difference  ' 4i+2 1 i-1 i-2- y  + 8 y  - 8 y  + y
y x    + O(h )

12 h
i
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Example

Solve the following second-order ODE with the given boundary conditions:

2
 0.2 

2
1

d y dy
- 2  + y = e      ,   y(0) = 1   ,    = - y

dx dx
x

x





Divide the solution domain into eight subintervals, and use the central difference 

approximation for all the derivatives in the given ODE and the boundary conditions. 

Compare the numerical solution with the exact solution:

Exact solution: 
 0.2  

2 2 e
y = - 0.2108 e  + 0.1238 e  +  

0.92

xx x 

Note: When there is an exact solution, numerical solution becomes unnecessary.
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2
 0.2 

2

d y
- 2  + y = e

dx
xGiven ODE:

Corresponding finite difference equation:

 0.2 1 1
2

y  - 2 y  + y
- 2  + y  = e    ,    i = 1, 2, ..., 7

h
ixi i i

i
  

 
 

Re-arrange:    0.2 2 2
1 1- 2 y  + 4 + h  y  - 2 y  = h  e     ,    i = 1, 2, ..., 7ix

i i i


 

Boundary conditions: y0 = 1   at  x = 0 

9 7
8

1

y  - ydy
   = - y

dx 2 hx

 y9 = y7 – 2 h y8=>
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2

2

2

4+h     -2         0         0          0         0          0           0

 -2      4+h      -2         0          0         0          0           0

 0        -2       4+h      -2          0         0 
2

2

         0           0

 0         0         -2       4+h       0          0          0           0

 0         0          0         -2       4+h      -2          0           0

 0         0          0     2

2

     0        -2        4+h      -2           0

 0         0          0          0         0          -2       4+h        -2

 0         0          0          0         0           0         -4       4+4

1

2

3

4

5

6

7

8

0.22

1
0.22

2
0.22

3

0.22
4

0.22
5

0.22
6

0.227

2 0.228

2+h  ey
h  ey

h  ey

y h  e
  =   

y h  e
y h  e
y h  e
yh+h h  e

x

x

x

x

x

x

x

x

















                                                                  

where h = 1/8  and xi = i h  for  i = 1, 2, …, 8
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Matrix Exact

y0 = 1.00000 1.00000

y1 = 0.94323 0.94317

y2 = 0.88620 0.88612

y3 = 0.82867 0.82857

y4 = 0.77036 0.77025

y5 = 0.71101 0.71087

y6 = 0.65031 0.65014

y7 = 0.58797 0.58778

y8 = 0.52366 0.52344
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Shooting Method

 Applicable to both linear & non-linear Boundary Value (BV) problems.

 Easy to implement

 No guarantee of convergence

 Approach:

• Convert a BV problem into an initial value problem

• Solve the resulting problem iteratively (trial & error)

• Linear ODEs allow a quick linear interpolation

• Non-linear ODEs will require an iterative approach similar to our root finding 

techniques.
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Shoothing to hit the target by adjusting the aim (slope) of the gun or a rifle.
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Cooling Fin Example

h = heat transfer coefficient

k = thermal conductivity

P = perimeter of the fin

A = cross sectional area of the fin

T∞ = ambient temperature

 
2

2

d T h P
 -  T - T  = 0

k Adx 

T(x = 0) = T0

T(x = L) = TL

L

Analytical solution:

2 h P
m  = 

k A
(x) = T(x) - T 

2
2

2

d θ
 - m  θ = 0

dx
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L

2 h P
m  = 

k A

(x) = T(x) - T 

2
2

2

d θ
 - m  θ = 0

dx

m x -m x
1 2θ( ) = C  e  + C  ex

Boundary Conditions:

0 0 0

L L L

T(0) = T      =>    θ(0) = T  - T  = θ

T(L) = T      =>    θ(L) = T  - T  = θ




Apply BC’s and solve for C1 and C2

   L 0

0

θ θ  sinh(m x) + sinh m (L - x)θ(x)
 = 

θ sinh(m L)
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L

 
2

2

d T h P
 -  T - T  = 0

k Adx 

BC’s: T(0) = T0

          T(L) = TL

1. Re-write as two first-order ODE’s: 0

dT
 = z    ,    T(0) = T

dx

dz h P
 =  (T - T )    ,    z(0) = ?

dx k A 

2. We need an initial value for z. Guess z1
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L

3. Integrate the two equations using RK4 and z1; 

this will yield a solution at x = L

4. Integrate the two equations again using a 2nd 

guess for z(0) = z2.

5. Linearly interpolate the z results to obtain the 

correct initial condition

(Note: this only works for Linear ODEs.)

Example:  1 2
3 2 L 2

1 2

z  - z
z  = z  +  T  - T  

T  - T
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