(.) ME - 510 NUMERICAL METHODS FOR ME Il

RUNGE-KUTTA METHODS

Euler's Method: Voo =Y, thT(t ,y.)
h
Heun's Method Yn+1 = ¥n + 5 [f (tn 5 Yn) +1f (tn+1 > Yn +1 (tn > Yn )]

h
The Runge-Kutta Order 4 Yn+1=Yn T 6 (K, +2K, +2K;+Ky)

h h
K1=f(tn’yn) Kzzf(tn+59Yn+5K1) K3=f(tn+g9Yn+gK2)

K,=1(t y, +hKj) h or At

n+1>o
1. How to choose?
2. Why constant and uniform?

Prof. Dr. Faruk Aring 3. How to find the total (overall) error?  spring 2025
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Richardson’s Extrapolation

“‘Richardson’s Extrapolation to the Limit” or “Deferred Approach to the Limit”:
Finding a more accurate answer using two inaccurate ones (estimates).

Remember Romberg integration table.

This is applicable to evaluation of functional values, derivatives, integrals,
solution of differential equations, etc.
Extrapolating Polynomials

Remember Taylor series expansion

f(x)=a, + 4, X" ta,, X where (X - X,) is replaced by x

f(x) = a, first-order approximation to f(x)

How do you find a better approximation to f(x)?

Prof. Dr. Faruk Aring Spring 2025
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Lewis Fry Richardson
English mathematician

1881 — 1953
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_ +1
f(x) = a, ++ 2, X"+
p+l1

Compute f(gx) where 0>q > 1: f(qx)=a, +a, (q X)p Ta,, (q X) + ...

P _ f()C)—f(q.X) ‘|‘O(Xp+1)

: X
Solve for a, x°: a, —q"

Substitute: a, = f(x) - S () = /(gX) -+ O(Xp+1) ]» e

_ P
= formula

Higher order approximation to f(0)

Prof. Dr. Faruk Aring Spring 2025
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X

e -1
Example: f(x) = " , £(0) 0 ? Exact solution: f(0)=1

e0.25 _ 1

At x = 0.25: f(0.25) =

=1.1361017 => 13.6 % error

12
e¥1»_ 1

_ . (0.125) =
Atx =0.0125: 1( ) N

= 1.0651876 => 6.5 % error

£(0.25) - (0.125)
1-(0.5)
0.9942736 => 0.6 % error

Richardson’s

[N

Atx=0: f(0) = a, = £(0.25) -

formula

11
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Richardson’s Extrapolation for Derivatives:
hZ
fx+h)=f(x)+hfi(x)+ ;f"(f)

f(x+h]/)l_f(x) . gfn(é:) : x < é: < x+h

\—Y—/—¢

First-order approximation O(h)

J'(x) =

Find a better approximation to the first derivative, f(x):

fGam=f=h) _ K
2 h 3!

\_Y_/ !

Second-order approximation O(h?)

J'(x) =

Prof. Dr. Faruk Aring
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£ = f(x+h>2 —hf(x—h) ++ a bt +a b+

S+ - f(x—h)
2 h

Define: P(h) =

Find: Lim ¢(h)  ¢(h)=f'(x)-a, h’-a, h*-a h"-..
h hY L, (B) L, (hY .
o8] 2] - 2 o ) -

Eliminate the terms with a,: f(x) = ¢(— +

Prof. Dr. Faruk Aring Spring 2025
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Example:

Given f(x) = e>, find f‘(0) using second-order evaluation and Richardson’s formula

Exact solution: f‘(0)=-ex  f(0)=-1.000000

Choose h = 0.1 f’'(0.1)=-e%'=-1.10517 => 10.5 % error

f'(-0.1)=-e°%17=-0.90484 => 10.5 % error

) = LOD=SEOD 66167 = 0.15 % error
2 (0.1)

Use Richardson’s extrapolation formula:

Prof. Dr. Faruk Aring Spring 2025
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h=0.1 £°(0.1) = - €% =-1.10517 => 10.5 % error
f'(-0.1)=-e0%1=-0.90484 => 10.5% error

oy = LODZSEOD 60167 = 0.15 % error
2 (0.1)

h=0.05 f’(0.1) =-e%%=-1.05127 => 5 % error

f'(-0.1)=-e0%=-095123 => 5% error

£y = LOOIFCE009 650042 = 0.04 % error
2 (0.05)

Use Richardson’s £0) = £(0.05) + f'(0-05)3—f'(0-1) N O(h4)

extrapolation formula:

Prof. Dr. Faruk Aring Spring 2025
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Use Richardson’s extrapolation formula:

1@ =009 + LOIV=LOD o3

70y =—1.00042 + 190042 +1.00167 -, 550

3

L J
!

Almost the exact answer

Prof. Dr. Faruk Aring Spring 2025
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A GENERAL DICTUM IN NUMERICAL MATH.

If anything at all is known about the errors in a process, that knowledge can be

exploited to improve the process.

. L: Objective to be evaluated (can be derivative,
g(h) = L- Za B2k definite integral, etc.
2k
k=1

¢ (h): Known function of chosen h

Procedure: Select a convenient h, compute numbers

D(n,1):(p(£nj , n=1,273,.. D(n,1)=L+iA(k»1) (23)

2 l DTy

First estimates of L Objective - Ay

Prof. Dr. Faruk Aring Spring 2025
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Richardson’s Extrapolation

D(n,m+1)= 4

D(n,m)—;D(n-l,m)

for derivatives 4™ _1
D(1,1)
D((2,1) D(2,2)
D(@3,1) D (3, 2) D (3, 3)
D(@4,1) D4, 2) D4, 3) D(4,4)

Accuracy increases as we move down the table in any column because h is

decreased by half at each step.

Accuracy increases as we move to the right in any row because of order-of-

magnitude decrease in h.

Note that smaller h does not always leads to higher accuracy. The accumulation

of round-off error eventually catches up with the process.

Prof. Dr. Faruk Aring
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0

Richardson’s Extrapolation 4™ 1

for Integrals: T, m+1) = 4m_1T(n,m)-mT(n-1,m)

Example:

4 4
Exact solution: j f(x) dx = j 2% dx =21.640426
0 0

One Panel (n=1) 34.0
Richardson's extrapolation table:
Two Panels (n=2) |25.0 22.0
Start with Trap Rule
g Four Panels (n=4) |22.5 21.666 |21.6444
One Panel (n=1) -57.1 %
Percent Errors: Two Panels (n=2) [-155% |-1.7%
Four Panels (n =4) -4.0% -0.12% - 0.02 %

Prof. Dr. Faruk Aring
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Richardson’s Extrapolation for Solving ODE’s:

2P™ Ak m) — Ak —1,m)
2p+m—1 _ 1

Richardson’s recursive formula: A (k,m+1) =

Example:

d
Given ODE: d—}t,:f(t’Y):_y , y(0)=1

0.25
Use Euler's method with: h= KT k=1,2,3,...

Exact solution: y (0.25) = 0.7788008

Prof. Dr. Faruk Aring Spring 2025
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N Richardson's extrapolation table
1 0.75
2 0.765625 0.78125
4 0.772476 0.7793274 0.7786865
] 0.7756999 0.7789236 0.778789 0.7788036
N Percent Errors
1 3.7
2 1.7 -0.3
4 0.8 - 0.07 0.015
8 0.4 - 0.02 0.0015 - 0.00036

Prof. Dr. Faruk Aring
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Selecting step size, h:

Given ODE: i—i’zf(t,y) , () =Y,

Exact (unknown) solution at t: Y(t,) =Y
Local error from step t . to t with stepsizeh;: Eje = C hP+!

* +1
Numerical solution of order p att: Yon =Y 7 Chy

h
Repeat the numerical solution with step size : h, = ?1

Numerical solution of orderp att: Yn n, = y + 2Ch}"

Prof. Dr. Faruk Aring Spring 2025
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Yo, =Y +Chf" Yo, =Y +2ChH5"

Combine these two equations and solve for y*: 'y =

p
. Yo.h, =2 Yn.n,

1-2°
* 2 (yn h, = Yn h)
Errorin y, ' Epea = Vi “Yn,n = E - C hﬁ’”
2P Yn.n, ~Yn.n 1 P VARV
C= ———— Eiamax = Chiax = ’2+,1hp+1xgg
2p -1 hﬁ) 1 ocal,ma ma 2p -1 h? 1 e
1
h < h & (2p B 1) i Maximum step size for the local error
T 20y AN not to exceed .

Prof. Dr. Faruk Aring
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The above procedure is rather expensive when we want to check h at every step
of the calculation. We need to have an inexpensive method with less number of

calculations.

Consider two methods of order p and g such that p+1 <q

Define:  Yn,p = y, + A h™" +O(h"?)

p+l1

Yn,q = yz + Bq+1 hq+1 + O(hq+2)
Subtract side by side: Yn,q " Yn.p = Aps h**' + O(hP**)

~y

Therefore: En Yn,q " ¥n,p This is the local erroriny,

Prof. Dr. Faruk Aring Spring 2025
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Runge-Kutta-Fehlberg Order 4

25 1408 2197 |
YH+IZYn+h(—F1 — K+ F4'_st

216 2565 4104 5
F=f( ,y.) _ 1 1
1 n7YH Fz—f tn+—h,yn+—hF1
4 4
3 3 9
E=f|t +—h, +—hF +—hF
3 (n 2 b 30 T3 2j
B =flt +oh , g, o g 120
13 2197 2197 2197

Bt wh b B SR, e Y
216 513 4104
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Runge-Kutta-Fehlberg Order 5

LONENo0 ORERE ORI F5+£F6j
135 12825 ° 56430 © 50 ° 55

Yn+1 ZYn +h(

1 1 3 3 9
F=f(t_ , — — — F,=f|t,+-h,y +—hF +—hF
1 (n Yn) Fz f(tn+4h9yn+4hF1j 3 (n ] y 32 1 32 2)

t +—h, vy, hF, +——hF

F,=ft 12 N 1932 hE, — 7200 7296
13 2197 2197 2197

F,=f|t, +h, yn+@hF1—8hF2+@hF3-84—5hF4
216 513 4104

t +~h,y ——hF +2hF,—->>hF, hF,-—hF.

1 8 3544 1859 11
F, =f o LR
2 27 2565 4104 40

Prof. Dr. Faruk Aring Spring 2025
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Multi-step Methods

Multi-step (multi-procedure) methods require information on the solution of more
than one point, and hence they are not self-starting.

- They are however more efficient (faster) than R-K methods.

- You may even hope that they may solve the instability problem of R-K methods.

Example using Euler’s method:

dy(t
% =f(ty®) . yt) =y, => Y., =Y, +hilt,y,)+0O(h)
@ ~ vy, +hf(t,y,) Local error

Y2 E@"‘ h f(t1@

etc.

If y, is also known (besides y,), what can you do for a better estimation of y,?
Prof. Dr. Faruk Aring
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Example using Euler’s method:

dy(t) _
dt

=f(ty(t)) . y(t,)=y, and y(t,) =y,

[

=7
Y2 = Somehow known very accurately, maybe
from a very accurate numerical calculation

Find y, (and the rest of the points, y,, y,, etc.) fitting a first degree polynomial to

f(t,,y,) and f(t,,y,), extend to the next panel, and find the area.

h h
Y, =Y, t E (3 f(t1’Y1) 'f(to’YO)) =y, t E (3 1:1 4 fo)
h
Yot =¥ ¥ 5 Bh-fy) , n=1,23, ..

5

Local truncation error: Ee = 12 h® (&) How do you find this?

Prof. Dr. Faruk Aring Spring 2025
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»>

f(ty)
Yy, =y, tA

h h
A=hf + E(f1-f0) = §(3f1-f0)

h
Y, =y, tA=y, + §(3f1'f0)

v
—

Prof. Dr. Faruk Aring
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Adams-Bashfort Open Formulae:
h
Ordertwo: vy, =Yy, + > 3f -f,) , n=1,23,..

Local truncation error: %h3f”(<§) => 0(2)

Order three: vy, ., =Yy, * % (23f -16f . +5f .,) , n=23,4, ..
Local truncation error: %h“ £"'"(€) => 0O(3)
Order four: vy, =y, + % (55f -59f ,+37f,-9f.) , n=3,4,5, ..

Local truncation error: %hS f(4)(§) => 0(4)

Prof. Dr. Faruk Aring Spring 2025
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ADAMS-BASHFORT OPEN FORMULAE

n
1
Yiz1 =Yi +h D o fige +OMTT)

k=1
Order of the | k=1 k=2 k=3 k=4 k=35 k=6 Local Truncation
Formula (n) ., ., a,, ., a, s Q. Error, O(h™?)
1.2 .,
1 1 S
3 1 5 4
2 > == — [ g0
2 2 12 ©
23 16 5 9 14 cm
3 12 12 12 24 h™ 1)
4 3 9 37 2 EhS f(4)(y;)
24 24 24 24 720
5 1901 i 2774 2616 ) 1274 251 475 16 £6) )
720 720 720 720 720 1440
4277 i 7923 9982 i 7298 2877 y 475 19087 17 £6) ®)
6 1440 1440 1440 1440 1440 1440 60480

Prof. Dr. Faruk Aring Spring 2025
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EXAMPLE ON MULTI-STEP METHODS

9Y _ y costt) IC: y(0) = 1
dt
Exact Solution: y(t) = e sin(t)

Use Heun's method to start and 3-point Adams-Bashfort open formula to proceed:

Heun's Method Yni1r = Yn T |:f (tn , yn) + f (tn+1 » Yot hf (tn , yn):|

2
2
Adams-Bashfort open order 3:

Y. =y, + % (23f,-16f, + 5f )

n

Prof. Dr. Faruk Aring Spring 2025
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t y (t) Heun's
Exact Y, % Error

0 0 1.0
0.25 1.28070 1.27639 0.34
0.5 1.61515 1.60492 0.63
0.75 1.97712 1.95996 0.87
1.0 2.31978 2.29591 1.03
1.25 2.58309 2.55358 1.14
1.5 2.71148 2.67858 1.21
1.75 2.67510 2.64153 1.25
2.0 2.48258 2.45139 1.26

Prof. Dr. Faruk Aring

Spring 2025




0

ME - 510 NUMERICAL METHODS FOR ME Il

t y (t) Heun's Adams-Bashfort
Exact Y. % Error Y, % Error
0 0 1.0 1.0
0.25 1.28070 @ 0.34 Q
0.5 1.61515 @ 0.63 O
0.75 1.97712 1.95996 0.87 1.97172 0.27
1.0 2.31978 2.29591 1.03 2.32236 -0.11
1.25 2.58309 2.55358 1.14 2.58942 -0.25
1.5 2.71148 2.67858 1.21 2.71148 - 0.04
1.75 2.67510 2.64153 1.25 2.66317 0.45
2.0 2.48258 2.45139 1.26 2.45679 1.04

Prof. Dr. Faruk Aring
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Note that, the order of the starter method is better be greater than the order of
the rest of the solution in order to reduce the beginning errors which may
accumulate later on.

This is not so in the above example.

Example: Error calculation of Adams-Bashfort open formulae:

Prove the following

Yoiq =Y, + 2 [3 f —fn_1] +

y =y + % [23f, -16f, , +5f, ,] +

Prof. Dr. Faruk Aring Spring 2025
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Predictor-Corrector Procedures

The idea behind the predictor-corrector methods is to use a suitable combination of

an explicit and an implicit technique to obtain a method with better convergence

characteristics.

Here is an example using Euler’'s method:

Predictor: vy, =y, + hf(t.,y,)

Corrector: Yoi1 =Y, + 2 I:f(tn’yn) + f(tn+1,Yﬁ+1]

Prof. Dr. Faruk Aring Spring 2025
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Find f, and y,
Predictor

Recalculate vy,
Corrector

»

h
YEH ZYn +§(3 fn _fn-l)

dy A
= = {1 f(t,
oy (ty)
using f, and f,
f with f, and f,
A
fIZ}
|
i, t, k,
\ J | J
Y Y
h h

Prof. Dr. Faruk Aring
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ADAMS CLOSED FORMULAE

n
Yitl =Yi+h D ok fiki +O(h™ "

k=1
Order of the k=1 k=2 k=3 k=4 k=35 k=6 Local Truncation Error,
Formula (n) o, ., a,, ., a, s . O(h™)
1
. . -5 h? f(©)
) 1 1 )
5 > 12
5 8 1 1 h4 f e
3 = = . e €]
12 12 12 24
9 19 5 1 19 s
4 — — -— —— ——h5 W
24 24 24 24 720 ©)
5 251 646 264 106 19 27 1650z
720 720 720 720 720 1440
475 1427 | 798 482 173 27 863 7 (o)
6 1440 | 1440 1440 1440 1440 1440 g ©

Prof. Dr. Faruk Aring
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ADAMS-MOULTON PREDICTOR-CORRECTOR METHODS

Order | Predictor-Corrector Formulae Local Error
YE+1 = Yn +E(3 fn - fn-l)
2 2 E :l Py
h n+l| — 6 Yn+1 yn+1
Yn+1 y +2(1f+1—|_fn)
Yy, =Y. +—(23f -16f  +5f ) 1
3 h En+1 E E yg+1 - Yi:wl
yn+1 Y. +E(5 fri—l +8fn 'fn-l)
h
y', =y +—(55f -59f +37f -9f )
24 19
4 En+l ; ppm—— YEH - YIC1+1
h 270
ye =y +£(9fp +19f -5f  +f )

Prof. Dr. Faruk Aring
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ILL-conditioned ODE: —— = 3y-t° , y(0)= =

General solution:

Particular solution:

Parasitic solution

du du
Example: d—x1 = 2Uy(x) , w(0)=3 d—x2 = 2u(x) , u,(0)=-3
General Solution: u,(x) = A e” +B e u,(x) = A e _B e 2X

Apply initial conditions:A=0 and B =3
The component with the positive exponential will dominate with any numerical

method

Prof. Dr. Faruk Aring Spring 2025



(.) ME - 510 NUMERICAL METHODS FOR ME Il

Stiff ODE: Any ODE with a rapidly decreasing transient solution requires an

extremely small step size for an accurate solution.

d;/—(tt) = A (y(t)-g(t)) + ddg(tt) , A<<0 and g(t) smooth and slowly varying
Solution:  Y(t) = [y(0)- g(0)] " +g(t) h must be very very small

\ J
|

Will soon be insignificant besides g(t)
But, (A h) will govern the stability. So h must be small as well.

For any resonable h for g(t) will give small (A h).

Prof. Dr. Faruk Aring Spring 2025
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dy(t) _ dg(t)
For a system of equations dt A (y(t) ) g(t)) p dt

the eigenvalues of A correspond to A. If all the eigenvalues have negative real parts,

the solution will converge to g(t) as t goes to infinity.

Example: ?j—t,:=98u+198v 2—¥=-99u+199v

ut)=2e"' -

Exact solution: . 2100 t
vit)=-e +e Rapidly decaying terms

requiring a very small step size
One answer to stiff ODE's is to use implicit methods: Ya+1 = Yn *h f(tn+1’yn+1)

Prof. Dr. Faruk Aring Spring 2025
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There exist other methods of solving ODE'’s which we will not discuss in detail.
One such method is called Bulirsch-Stoer method. It combines two ideas:
1. Richardson’s extrapolation to the limit; and

2. Rational function (Padé) approximation rather than power (Taylor) series.

See the book «Numerical Recipiesy.

Prof. Dr. Faruk Aring Spring 2025



(D ME — 510 NUMERICAL METHODS FOR ME II

SYSTEM OF ODE’s

Al ] = ) L -
Cross-section Tanks open at top

area A
< "

Pipe radius a

d hy(t)
dt

=-2h;+h, , hy(0)=hy,

Prof. Dr. Faruk Aring
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Consider: ddyE(X) =f(x,y(x), 2(x)) . ¥(0)=y,
2 =gk v 200) . 20)=2,

All the methods that we have discussed so far are applicable.

Euler's Method:  y,., =Y, +hf(x, ¥, z,)

Zn+1 = Zn 8 h g(xn’ yn’ Zn)

Prof. Dr. Faruk Aring
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h
The Runge-Kutta Order Four: Y, =Y, * 5 (K +2K, +2K; +K,)

Zn+1=Zn+% (Li+2L,+2L, +L,)

K1 = f(Xn’ yn’ Zn) I—1 = Q(Xn, yn: Zn)
h h h _ h h h
K2 = f(Xn+§’ yn+§K1’ Zn+§|—1j L2 - g(xn+§’ yn+§K1’ Zn+§L1j
h h h .
K3 = f(Xn+§, yn+§K2, Zn+§|_2j 3~ g(xn-i-_’ yn+ K2’ Zn+_L2j
Ky = f (Xt Vot Ky, Z,+ 0 L) L, = 9(Xp, Vath K5 2,4 W Ly)

Prof. Dr. Faruk Aring Spring 2025
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Example:

The Kermack - McKendrick model for the course of an epidemic in a population is

given by the system of ODE'’s:

where y, represents the number of people susceptible to the disease, y, represents
infected people that are still in circulation, and y, represents infected people that are

removed from the population through isolation, death, or recovery and immunity.

The parameters ¢ and d represent the infection rate and removal rate, respectively.
Use the parameter values ¢ = 1 and d = 5, along with initial values y,(0) = 95, y,(0) =

5, and y,(0) = 0.

Prof. Dr. Faruk Aring Spring 2025
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dy

d—t1='y1y2=f1(t’y1’y2’y3) J y1,o=95
dy

d—t2=y1y2'5y2=f2(t’y1’yz’ys) d yz,o=5
d

f=5y2=f3(t,y1,y2,y3) , Vg0 =0

Use a numerical method of your choice (not Euler’s method) to find y.(t), y,(t) , and

y5(t) (t is in months) and plot all on the same graph. You may use any suitable step
size, h, suchas h =0.1.

Choose h = 1/30 (one day) and Heun’s method (Runge-Kutta order two).

Prof. Dr. Faruk Aring Spring 2025
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100

- T~ y5(t) — no longer infected

y,(t) - susceptible
-

60

40
y,(t) - infected

20

t, days

Prof. Dr. Faruk Aring Spring 2025
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Examples of System of First-order ODE’s

" Predator-prey systems (Rabbits and Foxes)

= Chemistry and biochemistry (Chemical rate equations)

= Dilution problems

* Coupled spring-mass systems

= Electrical circuits

= SIR model of an epidemic (Susceptible, Infected, Recovered)
= Growth and decay problems

"= Temperature problems

" Trajectories of planets, comets, etc.

Prof. Dr. Faruk Aring Spring 2025
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HIGHER-ORDER ODE’s

d’y(x)

Second-order ODE: >
d x

=f(x, y(x), Y'(x))

Two conditions must be specified for the solution:

At x=0 y(0)=y, and
dy - Initial-value problem

=Vv'(0
Tl y'(0)

At x=0 y(0)=y, and
- Boundary-value problem

At x=L y(lL)=y,

Note that derivative conditions may also be specified at the boundaries

Prof. Dr. Faruk Aring Spring 2025
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SECOND-ORDER ODE - INITIAL VALUE PROBLEM

d;y)g() = f(x, y(x), Y'(x)) At x=0 y(0)=y, and
=Y
Disifie % =z(x)=g(x,y,2) , 20)=2z,
dj(::) =f(x y(x), 2(x)) , ¥(0) =y,

All the methods that we have discussed so far are applicable.
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SECOND-ORDER ODE

INITIAL VALUE PROBLEM

Given: y"=-y y(0)=0 y'(0) =1
Exact solution: | y (t) = sin(t) y '(t) = cos(t)

t 0 0.1 0.2 0.3 0.4 0.5 1.0
Yexact 0 0.0998 | 0.1987 | 0.2955 | 0.3894 | 0.4794 | 0.8415
Yeuler 0 0.100 | 0.200 | 0.299 | 0.396 | 0.440 0.940
Y exact 1.0 0.995 | 0.980 | 0.995 | 0.921 0.878 0.540
YA Eler 1.0 1.0 0.990 | 0.970 | 0.940 | 0.900 0.660

Prof. Dr. Faruk Aring

Spring 2025



(D) ME - 510 NUMERICAL METHODS FOR ME Il

BOUNDARY-VALUE PROBLEMS

2
Second-order ODE: ddy)g() =f(x, y(x), y'(X))

At x=0 y(0)=y, and
- Boundary-value problem
At x=L vy(lL)=y,

Note that derivative conditions may also be specified at the boundaries

There are two methods of solution: Matrix Method - fis a linear function of y
and all the derivatives of y

Shooting Method - A trial-and-error solution
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Matrix Method

. d%y(x ,
Given: dyx(z) =f(xyx).y(x) . v@)=a . y(b)=4
Select a set of equally-spaced points, x,, X,, ..., X., X.,,, on the interval [a,b]
x =a+tih , h=2"2  g<i<n+1
n+ 1

Approximate the derivatives using standart central-difference formula

' y(x+h)-y(x-h) _y.-y.
y(x) = ( )2h( > T

y(X+ h) -2y(x) +y(x-h) _Yiq -2y vy
h? B h?

y (x) =

Prof. Dr. Faruk Aring Spring 2025
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The problem becomes:

Yo = a (given)

Yia=2Yi +Viy _ X, Yier = Yis 1 <i<n
h2 2h
y=p4 (given)

This is usually a non-linear system of equations in n unkowns, y,, ¥,, ..., Y...

The solution of such a sytem of non-linear equations is seldom easy.

IF the “f” function is linear in y and y’, only then the solution is easier

because we can form a matrix;:
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First derivatives with finite differences:

Two-point forward difference y (x) = % + O(h)
Two-point backward difference y (x) = % + O(h)

: -3y +t4y. .-y,
Three-point forward difference y (x) = $1 72 Vi " Yuep 4 O(h?)

2h

Yio -4y, 4 +3Y, o O(h2)

Three-point backward difference  y (x) o h

112

Three-point central difference y (x) = y‘+12-hy"‘1 + O(h?)
' - V. ., - ., + V.
Five-point central difference y (x) = Yir *8Yir1 ~8Yir *¥ia O(h*)

12 h
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Example

Solve the following second-order ODE with the given boundary conditions:

d? 02 d
_2_y+y=eo'2 ’y(O)z'] , _y =-y

dx? dx|, _,
Divide the solution domain into eight subintervals, and use the central difference
approximation for all the derivatives in the given ODE and the boundary conditions.

Compare the numerical solution with the exact solution:

e 0.2 x

0.92

Exact solution: = 021087 +01238 ¢ V7 +

Note: When there is an exact solution, numerical solution becomes unnecessary.
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Given ODE:

_2_y+y_e

Corresponding finite difference equation:

Re-arrange:

Boundary conditions:

_z(yi1'2hg’+y’+1j+yi=e0'2"" , 1=1,2,...,7
-2y, + (4+h)y, -2y, =h*e %" | i=1,2,.
Yo=1 at x=0
o =l = wey-2ny,

Prof. Dr. Faruk Aring
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4+h* -2 0 0 0 0 0 0

-2 4+h* -2 0 0 0 0 0

0 -2  4+h* -2 0 0 0 0

0 0 -2  4+h* 0 0 0 0

0 0 0 -2 4+h* -2 0 0

0 0 0 0 -2 4+h? -2 0

0 0 0 -2 4+h* -2

0 0 0 0 0 -4 4+4h+h?

whereh=1/8 andx,=ih for i=1,2,...,8

Prof. Dr. Faruk Aring

Y1
Yo
Y3
Y4
Ys
Ye
Y7
Ys

2+h2 e—0.2x1
h2 e—0.2x2
h2 e—0.2x3
—0.2x4
-0.2x5
—-0.2xg

—0.2x5

-y
N
® ® d® d O

—-0.2xg
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Matrix Exact
Yo = 1.00000 1.00000
Y. = 0.94323 0.94317
Y, = 0.88620 0.88612
Y; = 0.82867 0.82857
Y. = 0.77036 0.77025
Ys = 0.71101 0.71087
Ye = 0.65031 0.65014
y; = 0.58797 0.58778
Ys = 0.52366 0.52344
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Shooting Method

* Applicable to both linear & non-linear Boundary Value (BV) problems.

= Easy to implement

= No guarantee of convergence

= Approach:

* Convert a BV problem into an initial value problem
* Solve the resulting problem iteratively (trial & error)
* Linear ODEs allow a quick linear interpolation

* Non-linear ODEs will require an iterative approach similar to our root finding

techniques.
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Shoothing to hit the target by adjusting the aim (slope) of the gun or a rifle.
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Cooling Fin Example

AR

A

h = heat transfer coefficient
k = thermal conductivity
P = perimeter of the fin

A = cross sectional area of the fin

T.. = ambient temperature

Prof. Dr. Faruk Aring

d°T hP
- T-T.)=0
dx? kA( )
T(x=0)=T,
Tx=L)=T,

Analytical solution:

m

, _hP

kA

A(x) = T(x) -
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-

d“e 2 A _
TE e -m-0=0
% T m X -m X
1, 2 . /5 B(x)=C,e™* +C, e
Z{ >
L Boundary Conditions:
o(x) =T(x)- T, T0)=T, => 06(0)=T,-T, =6,
T(L)=T, => 0QL)=T -T,=6
L, _hP L)=T L)=T -T,=6,

kKA
Apply BC’s and solve for C, and C,

8(x) _ (8,/8y) sinh(m x) + sinh(m (L - x))

0, sinh(m L)

Prof. Dr. Faruk Aring Spring 2025
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=

f i d°T hP

" - T-T,)=0
Z dx?> kA (T-T.)
T, T,
“ : BC's: T(0) =T,
L
T(L)=T,
_ _ , dT
1. Re-write as two first-order ODE’s: FE =z , T(0)=T,
X
dz h P
= T-T . z(0)="7
% KA ( ) (0)

2. We need an initial value for z. Guess z,

Prof. Dr. Faruk Aring Spring 2025
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=

3. Integrate the two equations using RK4 and z,;

77 T’“f this will yield a solution at x = L
.
TD 5 » Tl 4. Integrate the two equations again using a 2"
7 s
2 guess for z(0) = z,,

5. Linearly interpolate the z results to obtain the

correct initial condition

(Note: this only works for Linear ODEs.)

F 3

1(x)

Zy -2y

Example: z, =2z, + (TL } Tz)

1 2
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