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CLASSIFICATION  OF  DIFFERENTIAL  EQUATIONS

Differential Equations Ordinary ODE

Partial PDE

ODE Linear (in y and its 
derivatives)

y ' + A x2 y = f (x)

Non-linear (in y and 
its derivatives)

(y ')2 + A y y ' = f (x)

ODE Homogeneous ..... = 0

Non-homogeneous ..... = f (x)  0
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System of ODE's y ' = f (x, y, z)
z ' = g (x, y, z)

ODE Initial-value Problem depending on the conditions

Boundary-value Problem

Physical Problems Propagation Problem open domain

Equilibrium Problem closed domain

Eigenvalue Problem

Solution Methods Marching Numerical Method

Equilibrium Numerical Method

PDE’s:
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Mathematical 
Concern

Parabolic Often a propagation problem

Elliptic Often an equilibium problem

Hyperbolic Often an eigenvalue problem

PDE’s:
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LIPSHITZ  CONDITION

Theorem:  on existence of a solution for first-order ODE:

dy(t)
  f (t,y) 

dt


If  f (t,y) is continuous on  a  t  b,  and there exists a constant  L  such that

 f (t,y) - f (t,z)     L  y - z 

for all  t  [a , b],  and all real  y  and  z,  then the initial-value problem

0 0

dy(t)
  f (t,y)         with      y (t )  y  

dt
 

where  t0 in [a , b]  possesses a unique solution.  This is called Lipschitz condition.
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Rudolph Otto Sigismund Lipschitz

German mathematician

1832 – 1903
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Examples of ODE’s

Newton’s 2nd law of motion
dv

F = m  
dt

Fourier’s law of heat conduction
dT

q = - k  
dx

Swinging pendulum

2

2

d θ g
 +  sin(θ) = 0

Ldt
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Examples of ODE’s

Mass-spring-damper system
2

2

d y dy
m  + c  + k y = 0

dtdt

Collector of a solar heater

2
dy dy

x  - 2 y  = 0 
dx dx
 
 
 
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First–order, Ordinary Differential Equation

0 0

dy(t)
  f(t,y)    ,     y(t ) = y

dt


0 0

dy(t)  f(t,y) dt
y t

y t

 

0

0y(t) - y  = f(t,y) dt
y

t


 
0

0y(t) = y  + f t,y(t)  dt
y

t


How to solve?
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2 n+1
(n+1)0

0 0 0 0 0

(t - t ) (t - t)
y(t)  y(t ) + (t - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


TAYLOR  SERIES

2 n+1
''1 0 1 0

1 0 1 0 0 0 0

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


0 0

dy(t)
  f(t,y)    ,     y(t ) = y

dt


2 n+1
n+12 0 2 0

2 0 2 0 0 0 0

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


2 n+1
n+1n 0 n 0

n 0 n 0 0 0 0

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


All the y’s can be found. But ... 
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y(t0) = y0   IC

y(t1) = y1 = ?

y(t2) = y2 = ?

.......

y(tn) = yn = ?

Too much error because t0 and tn are too far apart
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2 n+1
(n+1)0

0 0 0 0 0

(t - t ) (t - t)
y(t)  y(t ) + (t - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


RUNNING  TAYLOR  SERIES

2 n+1
n+11 0 1 0

1 0 1 0 0 0 0

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


0 0

dy(t)
  f(t,y)    ,     y(t ) = y

dt


2 n+1
n+12 1 2 1

2 1 2 1 1 1 1

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


2 n+1
n+1n n-1 n n-1

n n-1 n n-1 n-1 n-1 n-1

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!




ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Spring 2025

2 n+1
(n+1)0

0 0 0 0 0

(t - t ) (t - t)
y(t)  y(t ) + (t - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


RUNNING  TAYLOR  SERIES

2 n+1
(n+1)

n+1 n n n n

h h
y   y  + h f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


2 n+1
(n+1)n+1 n n+1 n

n+1 n n+1 n n n n

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


n n

2 n+1
(n+1)

n+1 n n n

t  , y

h  f  f h
y   y  + h f(t ,y ) +   +  f  + ... +  y ( )

2!  t  y (n + 1)!


  
    

0 0

dy(t)
  f(t,y)    ,     y(t ) = y

dt

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Given:

Choose h = Δt

Question: y(t) = ?  

1 2 ny(t ) = ?   ,   y(t ) = ?   ,  ...  ,   y(t ) = ?  

t

y(t)

t0 t1 t2

y0

y(t2)
y(t1)

  0 0

dy(t)
 = f t,y(t)      ,    y(t ) = y  

dt

t3

y(t3)

0 0

1 1

2 2

n n

y(t ) = y    IC

y(t )  y  = ?

y(t )  y  = ?

...

y(t )  y  = ?






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Given:   0 0

dy(t)
 = f t,y(t)      ,    y(t ) = y  

dt

 
0 0

y t

y t

dy(t) = f t,y(t)  dt     
0 0

t t

0 0

t t

y(t) - y  = f t,y(t)  dt     =>     y(t) = y  + f t,y(t)  dt 

   
n+1 n+1

n n

t t

n+1 n n+1 n

t t

y(t ) - y(t ) = f t,y(t)  dt     =>     y  = y  + f t,y(t)  dt 

   
n+1 n+1

n n

t t

n+1 n n+1 n n n

t t

y  = y  + f t,y(t)  dt     =>     y  = y  + f t ,y dt 

Δt = h

?

?
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Leonhard Euler

Swiss mathematician

1707 - 1783
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EULER’S  METHOD: n+1 n n ny  = y  + h f(t ,y )

2

local n+1 n

h
E  =  y''( )     ,      t  <  < t

2!
 

2

total n

n

n 0

1

h
E  =  y''( )

2!
h h

         =  y''( ) h   Max (y'') h 
2! 2

h
            Max (y'') (t  - t )

2

          h



 







 

Local Error:

Total or Overall Error:

Euler’s method is an order 1 method, O(1) or O(h1) , i.e., the overall error is 

proportional to the first power of the step size, h.



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Spring 2025

Interpretation of the Euler’s method

  0 0

dy(t)
 = f t,y(t)      ,    y(t ) = y  

dt
Given Find y(t)

Or, define h = Δt = t1 – t0 = t2 – t1 = ...,   and    find  y1 = y(t1), y2 = y(t2), ...  

Use only the first to terms of the running Taylor series:

 1 0 0 0y  = y  + h f t ,y  

 

   

 

1 1

0 0

1

0

1 0 0 0 0 0

1 0 0 0

dy(t) = f t,y(t) dt

y  - y   f t ,y  dt = h f t ,y

y   y  + h f t ,y

y t

y t

t

t

 





f(t,y) is assumed to remain 

constant at the beginning of 

the interval

Why at the beginning?
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t

y’(t) = f(t,y)

t0

f(t0,y0)

t1 t2

f(t1,y1)

2

total n

h
E  =  y''( )

2!


 1 0 0 0y  = y  + h f t ,y  

 2 1 1 1y  = y  + h f t ,y  

Compare area under the curve (exact)

With area of the rectangle (approximate)

Local Errors

total n 0

1

h
E   Max (y'') (t  - t )

2

       h





O(1) method
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Geometrical Interpretation of Euler’s method
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Accumulation of Error in Euler’s method
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d y (t)
  - a y (t)      ,     y (0)  1

d t
 

- a t
exacty   e  

EXAMPLE  ON  EULER'S  METHOD

Euler's Method: y n + 1 = y n + h f (t n , y n)

n 0 1 2 3 4 5 10 100 1000

t / a 0 0.1 0.2 0.3 0.4 0.5 1.0 10.0 100.0

y exact 1 0.905 0.819 0.741 0.670 0.607 0.368 4.5 10 - 5 3.7 10 - 44

y Euler 1 0.900 0.810 0.729 0.656 0.590 0.349 2.6 10 - 5 1.0 10 - 46
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d y (t)
  - a y (t)      ,     y (0)  1 

d t
  - a t

exacty   e  

n n  1
n  1 n n

h y   y
y   y   h f t     ,   

2 2




    
 

EXAMPLE  ON  MODIFICATIONS  OF  EULER'S  METHOD

Euler's Method: y n + 1 = y n + h f (t n , y n)

Mod. 1 y n + 1 = y n + h f (t n + 1 , y n + 1)

Mod. 2 n n  1
n  1 n n

y   yh
y   y   h f t     ,   

2 2




    
 
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n 0 1 2 3 4 5 10 100 1000

t / a 0 0.1 0.2 0.3 0.4 0.5 1.0 10.0 100.0

y exact 1 0.905 0.819 0.741 0.670 0.607 0.368 4.5 10 - 5 3.7 10 - 44

y Euler 1 0.900 0.810 0.729 0.656 0.590 0.349 2.6 10 - 5 1.0 10 - 46

y end 1 0.909 0.826 0.751 0.683 0.621 0.386 7.3 10 - 5 4.1 10 - 42

y middle 1 0.905 0.819 0.741 0.670 0.606 0.368 4.6 10 - 5 3.4 10 - 44

EXAMPLE  ON  MODIFICATIONS  OF  EULER'S  METHOD
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Runge-Kutta Methods

n n n n

2

n+1 n n n n n
t ,y t ,y

h f f
y  = y  + h f(t ,y ) +  + f(t ,y )  + R

2! t y

  
 
   

n+1 n n ny  = y  + a h f(t ,y ) + b h f(t*,y*) + R

Taylor Series Order 2:

Runge-Kutta Order 2:

2

n+1 n n n n

h
y  = y  + h f(t ,y ) +  y''(t ) + R

2!

t* = tn + α h y* = yn + β h f(tn,yn)

Find the fractions, a, b, α, and β such that R’s are the same
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Carl David Tolmé Runge

German Scientist

1856 – 1927
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Martin Wilhelm Kutta

German Mathematician

1867 – 1944)
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Runge-Kutta Methods

n n n n n n n n
f ff t  h , y  h f(t ,y )  = f(t ,y ) +  h  +  h f(t ,y )  + ... 
t y

     
  
 

 n+1 n n n n n n ny  = y  + a h f(t ,y ) + b h f t +  h , y +  h f(t ,y )  + R 

Expand f (t*,y*) in Taylor Series around (tn,yn) and substitute

t* y*

n+1 n n n n n n n  + ... 
f f

y  = y  + a h f(t ,y ) + b h f(t ,y ) +  h  +  h f(t ,y )  + R
t y

   
   

n n n n

2

n+1 n n n n n
t ,y t ,y

h f f
y  = y  + h f(t ,y ) +  + f(t ,y )  + R

2! t y

  
 
   
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Equate the coefficients of the same powers of h:

For h1 :        1 = a + b

For h2 :       ½ = b α     and      ½  = b β

Choose any one of the unknowns 

arbitrarily, That sets the other three

n+1 n n n n n n n  + ... 
f f

y  = y  + a h f(t ,y ) + b h f(t ,y ) +  h  +  h f(t ,y )  + R
t y

   
   

n n n n

2

n+1 n n n n n
t ,y t ,y

h f f
y  = y  + h f(t ,y ) +  + f(t ,y )  + R

2! t y

  
 
   
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2nd Order RUNGE-KUTTA  Methods

yn+1 = yn + h f (tn , yn) Euler's Method: 

Heun's Method  n  1 n n n n 1 n n n

h
y   y     f(t  , y )   f t  , y h f (t  , y  

2      

n  1 n n n n n

h h
y   y   h  f (t +  , y +  f (t ,y )  

2 2
     

The Modified Euler’s Method 

1st Order
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Karl Heun

German Mathematician
1859 - 1929
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Geometrical Interpretation of Heun’s method
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Accumulation of Error in Euler’s method

Geometrical Interpretation of the Modified Euler’s method
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Running Taylor Series:

2 3 4 5
(4) (5)

n+1 n n n n n

h h h h
y   y  + h y'(t ) +  y''(t ) +  y'''(t ) +  y (t ) +  y ( )

2! 3! 4! 5!


Runge-Kutta order 4:

5
* * ** ** *** *** (5)

n+1 n n n

h
y   y  + a h f(t ,y ) + b h f(t ,y ) + c h f(t ,y ) + c h f(t ,y ) +  y ( )

5!
 n n n n n n

*
nt  = t  +  hn

*
n n n  y  = y  + h f(t ,y )n

Local 
Error

**
nt  = t  +  hn

**
n n n  y  = y  + h f(t ,y )n

***
nt  = t  +  hn

**
n n n  y  = y  + h f(t ,y )n

10 unknowns

Equate the coefficients 

of the same powers of h

9 relations
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Fourth-Order Runge-Kutta Methods

Method Attributed to Runge: 

 n 4n 1 1 2 3
h

y   y    K   2 K   2 K   K  
6     

n n1K   f (t  , y )  n n2 1
h h

K   f t    ,  y    K  
2 2

 
 
 

  

n n3 2
h h

K   f t    ,  y    K  
2 2

 
 
 

   n n4 3K   f (t  h  ,  y  h K )   

This method reduces to Simpson’s one-third rule when  f (t,y) = f (t).
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Method Attributed to Kutta: 

 n 1 n 1 2 3 4

h
y   y    K   3 K   3 K   K  

8     

1 n nK   f (t  , y )   K 
3

h
  y  ,  

3

h
 t f  K 1nn2 






 

3 n n 1 2

2 h h
K   f t    ,  y  -  K  h K  

3 3
    
 

4 n n 1 2 3K   f (t  h  ,  y  h K  - h K   h K )    

This method reduces to Simpson’s 3/8 rule when  f (t,y) = f (t).
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Runge-Kutta-Gill Method: 

n 4n 1 1 2 3
h 1 1

y   y    K   2 1 -  K   2 1   K   K  
6 2 2

    
         

     

n n1K   f (t  , y )  n n2 1
h hK   f t    ,  y    K  
2 2

 
 
 

  

n n3 1 2
h 1 1 1

K   f t    ,  y   -    h K  1 -  h K  
2 2 2 2

    
         

    

n n4 2 3
1 1K   f (t  h  ,  y   h K   1   h K ) 
2 2

 
  
 

    

This is one of the most widely used fourth-order methods. The constants are 

selected to reduce the amount of storage required in the solution of a large 

number of simultaneous first-order differential equations.
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EXAMPLE  ON  RUNGE-KUTTA  METHODS

yn+1 = yn + h f (tn , yn) Euler's Method: 

Heun's Method     y, (t f   y, t f   ) y, (t f  
2

h
   y y nnn1nnnn1  n  

The Runge-Kutta Order 4  ) K  K2   K2  (K 
6

h
   y y 4321n1  n 

K1 = f (tn , yn)  )K 
2

h
  y  ,  

2

h
  (t f  K 1nn2 

 ) K
2

h
    y,  

2

h
  (t f  K 2nn3   ) Kh    y, (t f  K 3n1  n4  
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n 0 1 2 3 4 5 10 100 1000

t / a 0 0.1 0.2 0.3 0.4 0.5 1.0 10.0 100.0

y exact 1 0.90484 0.81873 0.74082 0.67032 0.60653 0.36788 4.54 10 - 5 3.72 10 - 44

y Euler 1 0.900 0.810 0.729 0.656 0.590 0.349 2.6 10 - 5 1.0 10 - 46

y R-K 2 1 0.905 0.819 0.741 0.671 0.607 0.369 4.6 10 - 5 4.45 10 - 44

y R-K 4 1 0.90484 0.81873 0.74082 0.67032 0.60653 0.36788 4.54 10 - 5 3.72 10 - 44

d y (t)
  - a y (t)      ,     y (0)  1 

d t
 

- a t
exacty   e  
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RUNGE-KUTTA  METHODS

yn+1 = yn + h f (tn , yn) Euler's Method: 

Heun's Method     y, (t f   y, t f   ) y, (t f  
2

h
   y y nnn1nnnn1  n  

The Runge-Kutta Order 4  ) K  K2   K2  (K 
6

h
   y y 4321n1  n 

K1 = f (tn , yn)  )K 
2

h
  y  ,  

2

h
  (t f  K 1nn2   ) K

2

h
    y,  

2

h
  (t f  K 2nn3 

 ) Kh    y, (t f  K 3n1  n4   h  or  Δt

1. How to choose?   

2. Why constant and uniform?



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Spring 2025

STABILITY  OF  RUNGE-KUTTA  METHODS

d y
   y           IC:  y (0)  1 

d t
 

y (t) = eλ t  Exact Solution:

Numerical Solution: yn+1 = yn P( h)

Euler's Method  nn 1y   y  1   h    

Runge-Kutta Order 2
2

nn 1
(  h)

y   y  1   h   
2


 
  
 

  

Runge-Kutta Order 4
2 3 4

nn 1
(  h) (  h) (  h)

y   y  1   h       
2 3 ! 4 !

  
 
  
 

    
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-2

-1

0

1

2

3

4

5

6

7

8

-3 -2 -1 0 1 2

exp(x)
1+x+x*x/2

1+x+x*x/2+x**3/6
1+x+x*x/2+x**3/6+x**4/24
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EXAMPLE  ON  STABILITY  OF  RUNGE-KUTTA  METHODS

 1 - t 10 - y 10  
 td

 yd


 t - e A  (t)y  t10

y (0) = 0 

Given:

General Solution

Initial Condition

Exact Solution: y (t) = - t      ,     A ≡ 0 
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t Exact Runge-Kutta Order 4

 h = 0.01

0.2 - 0.2 - 0.2

0.4 - 0.4 - 0.39998

0.6 - 0.6 - 0.59986

0.8 - 0.8 - 0.79896

1.0 - 1.0 - 0.99232

1.2 - 1.2 - 0.11134

1.4 - 1.4 - 0.98318

1.6 - 1.6 1.4702

1.8 - 1.8 20.815

2.0 - 2.0 164.59
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t Exact Runge-Kutta Order 4

 h = 0.01 h = 0.001

0.2 - 0.2 - 0.2 - 0.19998

0.4 - 0.4 - 0.39998 - 0.39988

0.6 - 0.6 - 0.59986 - 0.59918

0.8 - 0.8 - 0.79896 - 0.79394

1.0 - 1.0 - 0.99232 - 0.95529

1.2 - 1.2 - 0.11134 - 0.86994

1.4 - 1.4 - 0.98318 1.0378

1.6 - 1.6 1.4702 16.410

1.8 - 1.8 20.815 131.26

2.0 - 2.0 164.59 981.07



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Spring 2025

t Exact Runge-Kutta Order 4

 h = 0.01 h = 0.001 h = 0.0001

0.2 - 0.2 - 0.2 - 0.19998 - 0.19986

0.4 - 0.4 - 0.39998 - 0.39988 - 0.39920

0.6 - 0.6 - 0.59986 - 0.59918 - 0.59483

0.8 - 0.8 - 0.79896 - 0.79394 - 0.76311

1.0 - 1.0 - 0.99232 - 0.95529 - 0.72925

1.2 - 1.2 - 0.11134 - 0.86994 0.79465

1.4 - 1.4 - 0.98318 1.0378 13.316

1.6 - 1.6 1.4702 16.410 107.03

1.8 - 1.8 20.815 131.26 800.08

2.0 - 2.0 164.59 981.07 5921.3
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