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CLASSIFICATION OF DIFFERENTIAL EQUATIONS

Differential Equations

Ordinary ODE

Partial PDE

ODE

Linear (in y and its
derivatives)

y'+tAx?y =1f(x)

Non-linear (in y and
its derivatives)

(y')P+Ayy'=f(x)

ODE

Homogeneous

Non-homogeneous

Prof. Dr. Faruk Aring
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System of ODE's

ODE Initial-value Problem

Boundary-value Problem

depending on the conditions

PDE'’s:

Physical Problems

Propagation Problem

open domain

Equilibrium Problem

closed domain

Eigenvalue Problem

Solution Methods

Marching Numerical Method

Equilibrium Numerical Method

Prof. Dr. Faruk Aring
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PDE’s:
Mathematical Parabolic Often a propagation problem
Concern ey T

Elliptic Often an equilibium problem

Hyperbolic

Often an eigenvalue problem

Prof. Dr. Faruk Aring
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LIPSHITZ CONDITION

Theorem: on existence of a solution for first-order ODE:

dy(t) _
gt f(ty)

If f(ty)is continuous on a<t<b, and there exists a constant L such that
[ fty)-ftz) | <Lly-z|

forall te[a,b], and allreal y and z, then the initial-value problem

dz_iﬂ = f(ty)  with  y(t,) =y,

where t,in [a, b] possesses a unique solution. This is called Lipschitz condition.
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Rudolph Otto Sigismund Lipschitz
German mathematician

1832 — 1903
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Examples of ODE’s

\"
d —
Newton’s 2n law of motion F=m d_\t/ m
L
2
qT ~NAAT
Fourier’s law of heat conduction q=-k — L
dx \
k|2
d29 e g .. B) = 0 :e L
Swinging pendulum a2z L sin(6) = :
|
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Examples of ODE’s

Mass-spring-damper system m ﬂ +C £ +ky=0
dt’ dt kS =c

dx dx %

|

2 |

d d '

Collector of a solar heater X (—yj -2y e 0 :
|

|
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First—order, Ordinary Differential Equation

t

YO~ fy) L oyit) =y, | v = [fty)dt

=Y, + Iftyt)

\ to/ y(t) =2

How to solve?
Vo

=

» 1
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dy(t)

TAYLOR SERIES gt fity) . vlt) =Y,

R R R T
) = 30 4t g+ STy e T g
) = 3000 (-t Tty + S v+ (W g

L s G g

y(t,) = y(t,) * (t, - t,) f(ty,y,) +

All the y’s can be found. But ...

Prof. Dr. Faruk Aring Spring 2025
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y(t) 4

Prof. Dr. Faruk Aring

y(t)) =y, IC
yt) =y, =7
y(t) =y, =

yit) =y, =7

Too much error because t, and t, are too far apart

Spring 2025



(D) ME - 510 NUMERICAL METHODS FOR ME Il

dy(t)

RUNNING TAYLOR SERIES gt fity) . v(t) =Y,
— (t t )2 " (t t)nﬂ (n+1)
YO = ¥+ (1) ftgnyo) + T2 Y6+t s YT

=304t )+ STy ¢ (T gy
st <36+ o -t) ”‘+ TR

(t nl) 'nl)nJrl n+l
y(t,) ‘(t n1> ‘+ e TR
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dy(t)

RUNNING TAYLOR SERIES I fity) , yi,) =Y,
(t-t,)° (t-9"" t)""! g
t) = t.)+ (t-t.) f(t + "t + ...+
y(t) = y(t,) + (t-t,) f(t,.y,) o) (t,) (+1)v &)
t+ -1 ’ " - -t " n+
Yta) = Y )+ -t ) Rt y) + e ) gy G ) e g
R 21 ( ‘|‘1)!
hZ hn+1 (n+1)
h hn+1
— v +hflt + ot ——— y
Yn+1 Yn ( n9Yn) 2' ( + 1)' (5)
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Given;

dy(t) _ _
dt - f(t7y(t)) ’ y(to) - yO

Question: y(t) =7

Choose h=At Yy({t,)=? , yt,)=? , ..., yit)="7
v 1 yt,) =y, IC
yi,)) =y, =7
yt) =y, =7
yit,) = y, =7
> t

Prof. Dr. Faruk Aring Spring 2025
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Given: dzit) = f(t,y(t)) , Y(t) =Y,

[dy®) = [f(ty®) dt  y©) -y, = [f(ty) dt =>  y(t)=y, + [f(ty(d) dt

L J
I

?
nt fhaq
) -YE) = [Fy®) ot =y =y, + [E(tyw)et

L i J
? /
tn+1 1:n

yn+1 = yn L _[ f(t’y(t)) dt == yn+1 = yn i f(tn!yn) _[ dt
o

At=h

Prof. Dr. Faruk Aring Spring 2025
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Leonhard Euler
Swiss mathematician

1707 - 1783

Prof. Dr. Faruk Aring Spring 2025



(.) ME - 510 NUMERICAL METHODS FOR ME Il

EULER’S METHOD: Yo =Y, T hft,y,)

Local Error: Eoe = = VY'(&) , t,,<&<t
h2
Etotal = ZE y"(é:n)
— h 1] h < h M n h
Total or Overall Error: - ZE y'(e) h < 2 ax (y") D
h n
< 2 Max (y") (t, - t,)
< h'

Euler’'s method is an order 1 method, O(1) or O(h") , i.e., the overall error is

proportional to the first power of the step size, h.

Prof. Dr. Faruk Aring Spring 2025
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Interpretation of the Euler’s method

dy(t)

dt

Given =f(tyt) . vt,)=y, Find y(t)

Or,defineh=At=t, —-t,=t,—t,=..., and find y, =y(t,),y, =y(t,), ...

Use only the first to terms of the running Taylor series:
f(t,y) 1s assumed to remain

constant at the beginning of

Y1 t
J- dy(t) = Jf(t,y(t))dt the interval
Yo to / .
Y, =Y, +h f(to,yo) o Why at the beginning?

t’l
Y. - Yo U f(to.Yo) jdt =hf(t,y,)
to

y, 0y, +hf(t,y,)

Prof. Dr. Faruk Aring Spring 2025
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Vi =Y, + hf(ty,)
y(t) = f(t,y) y, =y, +hf(t,y,)

Compare area under the curve (exact)

With area of the rectangle (approximate)

Etotal = Z% y"(gn)

Local Errors

h n
Etotal i E Max (y ) (tn - to)
I D S S o f(tyy)
f(toYo) : ! ! « h'
: i : » 1 \
b t, t, O(1) method

Prof. Dr. Faruk Aring Spring 2025
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vix)
A
Error in first step
|
/{ - Exact solution at end of
Ia/ one step
_ 3 Wi - - Solution given by Eq. (9.24)
h f(xg. Yo) v . at end of one step
. yo b
Slope |
| | - X

R —

Geometrical Interpretation of Euler’s method

Prof. Dr. Faruk Aring Spring 2025
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vix)

MNumerical solution
from Euler's method

Exact solution, y(x)

Tangent to curve y(x) at x;

Slope of tangent —_
at x;

Yo

J | J : .
X X LY .'I.'f 1

I 2 o
|"—h .I’r—f-|-*—.|’r—'-|"—h—>-|

Accumulation of Error in Euler’s method

Y

Prof. Dr. Faruk Aring Spring 2025
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EXAMPLE ON EULER'S METHOD

dy(t)

— - - t - O - 1
F ay (t) y (0)
yexact = e-at

Euler's Method: Y. .. =y . thft ,y)

n 0 |1 2 3 4 5 10 100 1000

t/a [0 [01 |02 0.3 0.4 0.5 1.0 10.0 100.0

y... |1 |0.905 (0819 [0741 |0670 |0.607 [0.368 [4510-5 |3.710-%
1 |0.900 |0.810 |0.729 |0.656 [0.590 |0.349 |2.610-5 [1.010-%

y Euler

Prof. Dr. Faruk Aring
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EXAMPLE ON MODIFICATIONS OF EULER'S METHOD

Yo.q =Y, + hf(tn + 1 , Yo * y””j

2 2
dy (t
YO _ay®) . yO =1 Vs =€
dt
Euler's Method: Y., =y +hf ,y.)

Mod. 1 @:yn+hf(tn+1,®
2 2

Prof. Dr. Faruk Aring Spring 2025
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EXAMPLE ON MODIFICATIONS OF EULER'S METHOD

n 1 2 3 4 5 10 100 1000
t/a 0.1 02 (03 |04 |05 1.0 10.0 100.0

Y exact 0.905 |0.819 |0.741 [0.670 |0.607 |0.368 |4.510°5 |3.710-%
Y Euter 0.900 |0.810 |0.729 |0.656 |0.590 |0.349 |2.610-5 [1.010-%
Y end 0.909 |0.826 |0.751 |0.683 |0.621 |0.386 |7.310°5 |[4.110-%
Y micete 0.905 |0.819 |0.741 [0.670 |0.606 |0.368 |4.610°5 |3.410-%

Prof. Dr. Faruk Aring

Spring 2025
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Runge-Kutta Methods

Taylor Series Order 2:
h2
yn+1 = yn +h f(tnayn) + §+ R

2
yn+1 = yn + h f(tmyn) + h_ [af

2| atl,, oy -

Y...=Y, tahf(t,y )+bhf(t'y")+R
Runge-Kutta Order 2:
t=t,+ah y* =y, +Bhf(t,y,)

Find the fractions, a, b, a, and 3 such that R’s are the same

Prof. Dr. Faruk Aring
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Carl David Tolmé Runge
German Scientist

1856 — 1927
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Martin Wilhelm Kutta
German Mathematician

1867 — 1944)

Prof. Dr. Faruk Aring Spring 2025



(D) ME - 510 NUMERICAL METHODS FOR ME Il

Runge-Kutta Methods

Your =¥, tahf(t,y,)+bhf[t+ah,y +ghf(t,y)] +R
\ J \ Y J

*

t* y

Expand f (t*,y*) in Taylor Series around (t.,y,) and substitute
Tty + e h, Yo+ 8 N f(tya)] = ftwyn) * @ h &+ B hif(ty,) &+

n ) n n»Jn niwJn at ni»Jn 8y

V. =y, +ahfd,y,)+bh {f(tn,m ran L pnigy) 2 } -
y

h® | of
=y +hfty)+ — | <
yn+1 yn ( n yn) 2| [8’[

th:¥n ay n

Prof. Dr. Faruk Aring Spring 2025
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of

+

2
Yorr = Yo T h1ty,) + h” Ff
oy

21 | ot

f(t,y,)| * R
th:¥n

TReH

yn+1 = yn + a h f(tn’yn) + b h |:f(tn’yn) i « h % + ﬂ h f(tn’yn) S_f +/:| i R
y

Equate the coefficients of the same powers of h:

Forh': T=a+b Choose any one of the unknowns

For h?: 2=ba and 2 =bf arbitrarily, That sets the other three

Prof. Dr. Faruk Aring Spring 2025



(D) ME - 510 NUMERICAL METHODS FOR ME Il

2nd Order RUNGE-KUTTA Methods

Euler's Method: Yorr =Ya tOhT(t,y,) 1st Order

h
Heun's Method e f(t,,y,) + f(to Yo +hft,,y,)]

h h
The Modified Euler's Method Yoir = Yo + h [f (tn+§ ,yn+§ f(tn,yn)}

Prof. Dr. Faruk Aring Spring 2025
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Karl Heun

German Mathematician
1859 - 1929
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Exact v(x)

Slope of v at x
. (0)
HXi 10 Vi)

i+1

Slope of y at x;

fx; v

Y
-

Geometrical Interpretation of Heun’s method

Prof. Dr. Faruk Aring Spring 2025
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vix)

-
v ‘,*’q\ Slope at x;, 1,
J-J|I _I.[‘.TJ:.LI._'I.];. l }

?

bl

|
|
|
| . : ,

.-# Vi, given by Euler's method
|
|
|

Slope atx;. f(x.y;)

|
|
|
.
T

Geometrical Interpretation of the Modified Euler’s method

Prof. Dr. Faruk Aring Spring 2025
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Running Taylor Series:

h2 " h3 "m h4 h5
Yo = +hY(t)+§Y( )+§Y( Dt (4)(t)+ y7 (&)

I

Runge-Kutta order 4: Local
Error

|
5

Yar =Y, tahflt,y,) +bhft,y)+chfit y)+chfit,y, ")+ h, y?(9)

tZ =t, Tah YZ =y, TBh{i(t,y,) 10 unknowns
t:* —t +7h y:* —y +phfit,y.) L Equate the coefficients

of the same powers of h

3k ek

t, =t, +vh y, =y, tehf(t .,y ) 9 relations

Prof. Dr. Faruk Aring Spring 2025
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Fourth-Order Runge-Kutta Methods

Method Attributed to Runge:

Voo =Y, + % Ky + 2K, + 2K; + Ky)
h h
K1:f(tn,yn) KZZf(tn_i_E’yn—i_EK']]
h
K3:f(tn+ ,yn+—K2J Ky, =f(t,+ h,y,+ hKj)

This method reduces to Simpson’s one-third rule when f (t,y) = f (t).

Prof. Dr. Faruk Aring Spring 2025
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Method Attributed to Kutta:

Y., =Y. + % (K, + 3K, + 3K, + K,)
K1 = f(tn’yn) K2:f(tn+%9YIl+%K1j
2h h

K, =f(tn+ 3 yn-§K1+ thj K, =f(t,+h,y +hK -hK, + hK,)

This method reduces to Simpson’s 3/8 rule when f (t,y) = f (t).

Prof. Dr. Faruk Aring Spring 2025
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Runge-Kutta-Gill Method:

h 1 1
yn+1:yn+€(K1+2[1_ﬁ]K2+2(1+ﬁjK3+K4j

h h
K = £, .y, Ko =t 5 v+ 5|

h 1 1 1
Ky = f |t — - — — | hK 1 - h K
3 (n+2 yn"‘( 2+\/§j 1+( \/ij 2}

\éhK +£ JhK)

This is one of the most widely used fourth-order methods. The constants are

Ky =f(t,+h, y,—

selected to reduce the amount of storage required in the solution of a large

number of simultaneous first-order differential equations.

Prof. Dr. Faruk Aring Spring 2025
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EXAMPLE ON RUNGE-KUTTA METHODS

Euler's Method: Your = Yo O T(L,Y,)
h
Heun's Method Yn+1 — YI’I + 5 [f (tn ’ Yn) + f (tn+1 9 Yn + f (tn 9 Yn )]
h
The Runge-Kutta Order 4 Yoir1 =Yn Jrg(K1 +2K,+2K;+K,)
K1=f(tn’yn) K2:f(tn+29Yn+EK1)
2 2
h h

K3:f(tn+59Yn+5K2) K4:f(tn+19 Yn+hK3)

Prof. Dr. Faruk Aring Spring 2025
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dy(t)
——— =-ay(t) , y(@) =1
dt
_ -at
yexact €

n 1 2 3 4 5 10 100 1000
t/a 0.1 0.2 0.3 0.4 0.5 1.0 10.0 100.0
Y cract 0.90484 | 0.81873 | 0.74082 | 0.67032 | 0.60653 | 0.36788 | 4.5410-°> | 3.7210-#
Y Euter 0.900 0.810 0.729 0.656 0.590 0.349 2.610-3 1.0 10-4¢
Yrko 0.905 0.819 0.741 0.671 0.607 0.369 4.6 10-3 4.4510-#+
Y Rk 4 0.90484 | 0.81873 | 0.74082 | 0.67032 | 0.60653 | 0.36788 | 4.5410-°> | 3.7210-#

Prof. Dr. Faruk Aring

Spring 2025
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RUNGE-KUTTA METHODS

Euler's Method: Your =Y, thE(t,,y,)
h
Heun's Method Yns1 = Yn +§ [f (t,,y,) +f (tn+1 AN (T )]
h
The Runge-Kutta Order 4 Yn+1=Yn +g(K1 +2K, +2K;+K,)

_ h h h h
K1_f(tn’yn) Kzzf(tn+59Yn+5K1) K3=f(tn+59Yn+5K2)
K,=1f(t,,;, y, +hKjy) h or At

1. How to choose?
2. Why constant and uniform?

Prof. Dr. Faruk Aring Spring 2025
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STABILITY OF RUNGE-KUTTA METHODS

d—i’ziy IC: y(0) =1
Exact Solution: y (t) = et
Numerical Solution: Yner = Yo P(A )
Euler's Method Yoir = Yo (1 + 4 h)
Runge-Kutta Order2 ~ Yns1 = Yn [1 + Ah + (12h)2]

Runge-Kutta Order 4  Yni1 = Yn (1 v ah 4 !

Prof. Dr. Faruk Aring
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exp(x) —

7 1+X+X*X/2
1+X+X*X/2+x**3/6

1+X+X*X/2+X**3/6+Xx**4/24

-3 -2 -1 0 1 2

Prof. Dr. Faruk Aring Spring 2025
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EXAMPLE ON STABILITY OF RUNGE-KUTTA METHODS

Given: Y 10y-10t-1
dt
General Solution y(t)=Ae' -t
Initial Condition y(0)=0

Exact Solution: yt)=-t , A=0

Prof. Dr. Faruk Aring Spring 2025
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t Exact Runge-Kutta Order 4
h=0.01
0.2 -0.2 -0.2
0.4 -04 - 0.39998
0.6 -0.6 - 0.59986
0.8 -0.8 - 0.79896
1.0 -1.0 - 0.99232
1.2 -1.2 - 0.11134
1.4 -14 - 0.98318
1.6 -1.6 1.4702
1.8 -1.8 20.815
2.0 -2.0 164.59

Prof. Dr. Faruk Aring
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t Exact Runge-Kutta Order 4
h=0.01 h =0.001
0.2 -0.2 -0.2 - 0.19998
0.4 -04 - 0.39998 - 0.39988
0.6 -0.6 - 0.59986 - 0.59918
0.8 -0.8 - 0.79896 - 0.79394
1.0 -1.0 - 0.99232 - 0.95529
1.2 -1.2 - 0.11134 - 0.86994
1.4 -14 - 0.98318 1.0378
1.6 -1.6 1.4702 16.410
1.8 -1.8 20.815 131.26
2.0 -2.0 164.59 981.07

Prof. Dr. Faruk Aring

Spring 2025
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t Exact Runge-Kutta Order 4

h=0.01 h =0.001 h =0.0001
0.2 -0.2 -0.2 - 0.19998 - 0.19986
0.4 -0.4 - 0.39998 - 0.39988 - 0.39920
0.6 -0.6 - 0.59986 - 0.59918 - 0.59483
0.8 -0.8 - 0.79896 - 0.79394 -0.76311
1.0 -1.0 - 0.99232 - 0.95529 - 0.72925
1.2 -1.2 - 0.11134 - 0.86994 0.79465
1.4 -14 - 0.98318 1.0378 13.316
1.6 -1.6 1.4702 16.410 107.03
1.8 -1.8 20.815 131.26 800.08
2.0 -2.0 164.59 981.07 5921.3

Prof. Dr. Faruk Aring
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