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Numerical  Integration

Given a complicated f(x) or a set of tabulated values, xi’s and corresponding f(xi)’s:

Question: For a given range, [a,b]

b b

a a

f (x)  g (x)     ,      f (x) dx  g(x) dx  

Answer:  Replace f (x) or the tabulated data with a simple function g(x) and

                operate on g(x), instead              

b

a

f (x) dx = ?

Error of integration:

b b

a a

E = f (x) dx - g(x) dx 
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Trapezoidal Rule
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Newton - Cotes  Formulae

Trapezoidal Rule (set of first-degree polynomials) 

Simpson's One-third Rule (set of second-degree polynomials) 

Simpson's Three-eights Rule (set of third-degree polynomials)

 n

0

x

n0 1 2 n-1
h

f (x)  d x   f   2 f   2 f   ...  2 f   f
2x

      trap

3
 ' 'n 0

2

- (x  - x )
E     f ( )

12 n


 n1-n2-n210

x
f  f 4  f 2  ...  f 2  f 4  f 

3

h
  x d  (x) f

n

0

x 1/3

5
(4)n 0

4

- (x  - x )
E     f ( )

180 n


 n

0

x

n0 1 2 3 n-3 n-2 n-1
3 h

f (x)  d x   f   3 f   3 f   2 f  ...  2 f   3 f   3 f   f
8x

        

number of panels
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Thomas Simpson FRS

British Mathematician

1710 - 1761
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Newton-Cotes Formulae:
b n

i
i  0a

I  f (x)  dx    w  f (x )  i


  

The range, (a,b), is divided into equal spacings (panels).

A polynomial of small degree passes through these equally-spaced points. 

Why equal spacing?

Does the function has to be a polynomial?

Error in Newton-Cotes Formulae: i i
1

I = f(x) dx = w  f(x ) + g(x) h(x) dx
b bN

ia a
 

How to minimize?Exact Approx.

weights nodes



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Fall 2023

Infinite Set of Orthogonal Functions:

Two functions, f(x) and g(x), both real-valued and continous, are called orthogonal 

to each other with respect to a third (weighting) function, w(x), in the range [a,b] if

b

a

I  w(x) f(x) g(x) dx  0 

Examples: 

 

1

0

(1) sin(n  x) sin(m  x) dx  0   when  n  m   

{sin(n x) , n = 1, 2, ... } 

1

0

(1) cos(n  x) cos(m  x) dx  0   when  n  m   

{cos(n x) , n = 0, 1, ... } 

Fourier
Series
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Jean-Baptiste Joseph Fourier

French Mathematician

1768 -1830
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Legendre polynomials, which form an infinite set, have this property when w(x) = 1 

and the range [-1,+1]

1

n m

-1

(1) P (x) P (x) dx  0   ,   n  m 

n{P (x) , n = 0, 1, ... }

P0(x) = 1 P1(x) = x  1) -  x(3 
2

1
  (x) P 2

2 

  x)3 -  x(5 
2

1
  (x) P 3

3   3)   x30 -  x(35 
8

1
  (x) P 24

4    x)15   x70 -  x(63 
8

1
  (x) P 35

5 
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Adrien-Marie Legendre

French Mathematician

1752 – 1833



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Fall 2023

Legendre Polynomials 

P0(x) = 1 P1(x) = x  1) -  x(3 
2

1
  (x) P 2

2 

  x)3 -  x(5 
2

1
  (x) P 3

3   3)   x30 -  x(35 
8

1
  (x) P 24

4    x)15   x70 -  x(63 
8

1
  (x) P 35

5 

Chebyshev Polynomials 

T0(x) = 1 T1(x) = x T2(x) = 2 x2 - 1

T3(x) = 4 x3 - 3 x T4(x) = 8 x4 - 8 x2 + 1 T5(x) = 16 x5 - 20 x3 + 5 x
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Laguerre Polynomials 

Hermite Polynomials 

H0(x) = 1 H1(x) = 2 x H2(x) = 4 x2 - 2

H3(x) = 8 x3 - 12 x H4(x) = 16 x4 - 48 x2 + 12 H5(x) = 32 x5 - 160 x3 + 120 x

 1  (x) L0
0   1  x -  (x) L0

1   2)  x 4  (x 
2

1
  (x) L 20

2 

 6)  x 18   x9   x(- 
6

1
  (x) L 230

3   24)  x 96   x72   x16  (x 
24

1
  (x) L 2340

4 
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ORTHOGONAL POLYNOMIALS

Name Range of 
Orthogonality

Weighting 
Function

Integral Property

 
1 k  2

2
 dx  P P w

1 

1 -

kk 




Legendr
e

[- 1 , + 1] w(x) = 1

Chebyshev [- 1 , + 1]  
 x- 1

1
  (x) w

2


 0 k   if      dx  T T w
1 

1 -

kk 


 0 k   if     
2

 dx  T T w
1 

1 -

kk 





Laguerre [0 , ∞ ] w (x) = xα e-x 
!k 

1) k   ( 
 dx  L L w

0

kk







Hermite [- ∞ , +∞ ]  e  (x) w
2 x- !k   2   dx  H H w k

 

 -

kk 



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Admond Nicolas Laguerre

French Mathematician

1834 – 1886
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Expansion of f(x) in terms of infinite set of orthogonal functions 

Suppose the functions, Qn(x), forms an orthogonal set, n -> inf.

0 0 1 1 2 2 n n f(x) = c  Q (x) + c  Q (x) + c  Q (x) + ... + c  Q (x) + .... 

 

 

b

n

a

b

n 0 0 1 1 2 2 n n

a

b

n n n

a

 w(x) Q (x) f(x) dx = 

                     w(x) Q (x) c  Q (x) + c  Q (x) + c  Q (x) + ... + c  Q (x) + ....  dx

                 = w(x) Q (x) c  Q (x)  dx






b

n

a
n b

2
n

a

w(x) Q (x) f(x) dx

c  =  

w(x) Q (x) dx




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Example

Expand the function f(x) = 1 in Fourier sine series in the range [0,1], i.e., find the 

coefficients, an’s, in the orthogonal expansion

n
0

f(x) = a  sin(n x)




The orthogonality property:

   
1

1

0
0

1 2
sin  dx = -  [ cos n x ] =    if  n is odd

n n 

                                                          = 0        if n is even

n x 
 
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Solution:
4 4 4

f(x) = 1 =  sin( x) +  sin(2 x) +  sin(3 x) + ....
3 5

  
  
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A Fourier series is an expansion of a periodic function, F(x), in terms of an infinite 

sum of sines and cosines.
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Expressing a periodic function, F(x), as a Fourier series (sines and cosines) is 

sometimes more advantageous than expanding it as a power series (Taylor or 

MacLaurin). In particular, astronomical phenomena are usually periodic, as are 

heartbeats, tides, and vibrating strings, so it makes sense to express them in terms 

of periodic functions.

Fourier series make use of the orthogonality relationships of the sine and cosine 

functions. The computation and study of Fourier series is known as harmonic 

analysis and is extremely useful as a way to break up an arbitrary periodic function 

into a set of simple terms that can be plugged in, solved individually, and then 

recombined to obtain the solution to the original problem or an approximation to it to 

whatever accuracy is desired or practical.
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The original motivation of Fourier was to solve the heat equation which is a 

parabolic partial differential equation:

See the book chapter, «Fourier Method for Heat Conduction», on OdtuClass.

Orthogonal fuctions as polynomials (such as Legendre set), not as periodic 

functions (such as sines and cosines), have another important use: evaluate 

integrals very accurately. The original work was done by Gauss.



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Fall 2023

Carl Friedrich Gauss

German Mathematician

1777 – 1855
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ORTHOGONAL POLYNOMIALS

Name Range of 
Orthogonality

Weighting 
Function

Integral Property

 
1 k  2

2
 dx  P P w

1 

1 -

kk 



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e
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 x- 1

1
  (x) w

2

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1 -
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


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!k 
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0

kk
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




Hermite [- ∞ , +∞ ]  e  (x) w
2 x- !k   2   dx  H H w k

 

 -

kk 



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Choose xi’s such that, the sum gives the integral

Gauss - Legendre  Quadrature  Method

b n

i
i  0a

I  f (x)  dx    w  f (x )  i


  

n + 1 values of wi 

n + 1 values of  f (xi)
  =>

There are 2 (n + 1) parameters which define a 

polynomial of degree 2 n + 1

 )(x f w
n

0  i
ii



b

a

f (x) dx  exactly  when  f (x)  is a polynomial of degree  2 n + 1, or less 



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Fall 2023

Replace f(x) by some polynomial of degree n

b b b

n

a a a

I  f (x)  dx     P  (x)  dx   R (x)  dx     

where the last term is the error term.

We will try to make
b

a

 R (x)  dx  0

when f (x) is a polynomial of degree 2 n + 1, or less.
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n

n i i
i  0

0 2 n1 2 n
n 0 1

0 1 0 2 0 n 1 0 1 2 1 n

P (x)  L  (x)  f (x ) 

(x - x ) (x - x ) ... (x - x )(x - x ) (x - x ) ... (x - x )
P (x)    f (x )    f (x )  .....

(x  - x ) (x  - x ) ... (x  - x ) (x  - x ) (x  - x ) ... (x  - x )





  



Substitute

b b bn

i i
i  0a a a

b bn

i i
i  0 a a

I  f (x)  dx     L (x)  f (x )  dx   R (x)  dx 

                             L (x) dx  f (x )   R (x)  dx





  

 
  

 

  

  

Write Pn(x) in Lagrange form:

n

i
i  0

w  f (x )  i

 0   ?? 

 

L0(x) L1(x)
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The error term in Lagrange form:

b    a      ,       
! 1)(n

)(f
  ) x-(x   (x) R

1)(nn

0  i
i 










Change coordinates from  x  in  [a , b] to  z  in  [-1 , 1] where

(n 1)n n

i i i
i  0 i  0

2 x - (a  b) 2
z      ,   dz =  dx

b - a b - a
(b - a) z  b  a

F (z)  f (x)  f 
2

F ( )
f (x)  F (z)  L  (z)  F (z )  (z - z )         ,      - 1    1

(n 1) !

 

 


 




     
 

     
 
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where
n

j

j  0 i j
j  i

z - z
L (z)  

z  - z


 

b 1 1 1n

i i
i  0a - 1 - 1 - 1

I  f (x)  dx  F (z) dz   L (z) dz  F (z )   R (z)  dz


 
    

 
   

(n 1)n

i
i  0

F ( )
R (z)  (z - z )         ,      -1      1

(n 1) !

 




   


f(x)  or  F (z)  is a polynomial of degree  2 n + 1,  then  F(n+1)(x )  is a polynomial of 

degree  n,  at most. 

Let
 (n 1)

n

F ( )
  g (z)

(n  1) !

z



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dz  (z)g  )z - (z   )(z F  dz (z)L   dz (z) F  I
1

1 -

n

0i
nii

n

0  i

1

1 -
i

1

1 -
 

















Question: ??  0   dz  (z)g  )z - (z
1

1 -

n

0i
ni 



when  F (z)  is a polynomial of 

degree  2 n + 1.

The answer is to choose  zi’s  such that this is true, using a complete set of 

orthogonal functions.

Choose Legendre Polynomials as the orthogonal set of functions. Expand in terms 

of Legendre polynomials: 

 (z) P  b  (z) P b  ...  (z) P b  (z) P b  )z - (z
1n

0  i
ii1n1n1100

n

0  i
i 








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n

n 0 0 1 1 n n i i
i  0

g (z)  c  P  (z)  c  P  (z)  ...  c  P  (z)  c   P  (z) 


     

1 1 1 1n n n n

i n i j i j n 1 i i n 1
i 0 i  0 j  0 i  0- 1 - 1 - 1 -1

R (z) dz  (z - z )  g (z)  dz     b  c   P P   dz  b  c  P P  dz 
   

        

Since
 j  ifor      0  dz (z)P (z) P

1

1 -
ji 

 
1 1n

2

i i i
i  01 - 1

R (z) dz  b  c  P (z)  dz 


  
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 
1

2

i

1

P (z)  dz  0




1

- 1

R (z) dz  0

Since ci  0   and  

If   the only way is to choose bi = 0  for  i = 0, 1, ..., n. 

Then
n n 1

i i i n 1 n 1
i  0 i  0

(z - z )  b  P (z)  b   P  (z)


 
 

  

So, choose zi’s such that Pn+1(z) = 0. i.e., zi’s are the roots of the Legendre 

Polynomial Pn+1(z).

Legendre Polynomials:
 0P   1   z  P1 

2
 2

1
P    (3 z  - 1) 

2
  z) 3 - z (5 

2

1
  P 3

3 



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Fall 2023

Gauss - Legendre  Quadrature  Method

b +1 N

i
i  1a -1

I  f(x) dx = F(z) dz   w  F(z )     ,   N = 2, 3, .... i


   

Change of Variable:
 b - a  z + b + a b - a

x =      ,     dx =  dz  
2 2

zi’s are the roots of the Legendre polynomial, PN(z) = 0

wi’s are calculated from:  
1 1

11 1

z - z
w  = L z  dz =  dz    

z  - z

N
j

i i
j i j
j i

 

 


 
  
 

 

 
N

i
i  1

I  w  F(z )     if F z  is a polynomial of degree  2 N -1  or LESS i i


 
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Gauss-Legendre Nodes and Weights

2 0.5773502692 1.0000000000

3
0.0000000000 0.8888888889

0.7745966692 0.5555555556

4
0.3399810436 0.6521451549

0.8611363116 0.3478548451

5

0.0000000000 0.5688888889

0.5384693101 0.4786286705

0.9061798459 0.2369268850

6

0.2386191861 0.4679139346

0.6612093865 0.3607615730

0.9324695142 0.1713244924

7

0.0000000000 0.4179591837

0.4058451514 0.3818300505

0.7415311856 0.2797053915

0.9491079123 0.1294849662

8

0.1834346425 0.3626837834

0.5255324099 0.3137066459

0.7966664774 0.2223810345

0.9602898565 0.1012285363

9

0.0000000000 0.3302393550

0.3242534234 0.3123470770

0.6133714327 0.2606106964

0.8360311073 0.1806481607

0.9681602395 0.0812743884

10

0.1488743390 0.2955242247

0.4333953941 0.2692667193

0.6794095683 0.2190863625

0.8650633667 0.1495513492

0.9739065285 0.0666713443

N  x w
N  x w
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Gauss - Legendre  Quadrature  Method

 
N

i
i  1

I  w  F(z )     if F z  is a polynomial of degree  2 N -1  or LESS i i


 

Example when N = 2:    2
2

1
P z  = 3 z  - 2  = 0 

2

1 2

1 1
z  = -        and      z  =  

3 3

wi’s are calculated from:  
1 1

11 1

z - z
w  = L z  dz =  dz    

z  - z

N
j

i i
j i j
j i

 

 


 
  
 

 
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Example when N = 2:

 
1 1 12

2
1 1

1 1 1 21 1 1
1

1

1

z - z z - z
w  = L z  dz =  dz =  dz 

z  - z z  - z

1z - 
3      =  dz = 1  

1 1-  - 
3 3

N
j

j j
j

  

  






   
       

 
 
 
 
 

  



 
1 1 12

1
2 2

1 2 2 11 1 1
2

1

1

z - z z - z
w  = L z  dz =  dz =  dz 

z  - z z  - z

1z + 
3      =  dz = 1  

1 1 + 
3 3

N
j

j j
j

  

  






   
       

 
 
 
 
 

  


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Examples:

Integral
Exact 
Solution

G-L nodes 
& weights

G-L 
Solution

Comments

4 2 4 Exact result

81 2 81 Exact result

0.9975212 2 0.8705496 Low accuracy

0.9975212 4 0.98860 More accurate
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1

i i
11

I = f(x) dx = F(z) dz  w  F(z ) 
b N

ia 

  

Define a new independent variable:
2 x - b - a 2

z =      dz =  dx
b - a b - a

Find  dz  and  F(z)

Choose N

Find nodes (xi) and weights (wi) from tabulated data

1

1

I = f(x) dx = F(z) dz 
b

a 
 

The nodes (xi) are the zeros of Legendre orthogonal polynomials, which are 

orthogonal in the range, (-1, +1)
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Error expression for Gauss-Legendre quadrature method:

 
      1    1-    ,        f  

! N 2  1)  N (2

! N  2
  E (2N)

1  N 2







3

4

where N is the number of nodes and weights used.

See the Web site «Gaussian Quadrature Weights and Abscissae» for more on  

Gauss-Legendre nodes and weights. 

https://pomax.github.io/bezierinfo/legendre-gauss.html
https://pomax.github.io/bezierinfo/legendre-gauss.html
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GAUSS  QUADRATURE  METHODS

Name Quadrature Formula

Gauss-Legendre 
 1 N

i i
i  1- 1

f (x) dx  w  f (x )




 

Gauss-Chebyshev 
 1 N

i i2
i  1- 1

1
 f (x) dx  w  f (x )

1 - x





 

Gauss-Laguerre 
N

- x
i i

i  10

e  f (x) dx  w  f (x )




 

Gauss-Hermite 2
N

- x
i i

i  1-

e  f (x) dx  w  f (x )




 
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ORTHOGONAL POLYNOMIALS

Name Range of 
Orthogonality

Weighting 
Function

Integral Property

 
1 k  2

2
 dx  P P w

1 

1 -

kk 




Legendr
e

[- 1 , + 1] w(x) = 1

Chebyshev [- 1 , + 1]  
 x- 1

1
  (x) w

2


 0 k   if      dx  T T w
1 

1 -

kk 


 0 k   if     
2

 dx  T T w
1 

1 -

kk 





Laguerre [0 , ∞ ] w (x) = xα e-x 
!k 

1) k   ( 
 dx  L L w

0

kk







Hermite [- ∞ , +∞ ]  e  (x) w
2 x- !k   2   dx  H H w k

 

 -

kk 



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Legendre Polynomials 

P0(x) = 1 P1(x) = x  1) -  x(3 
2

1
  (x) P 2

2 

  x)3 -  x(5 
2

1
  (x) P 3

3   3)   x30 -  x(35 
8

1
  (x) P 24

4    x)15   x70 -  x(63 
8

1
  (x) P 35

5 

Chebyshev Polynomials 

T0(x) = 1 T1(x) = x T2(x) = 2 x2 - 1

T3(x) = 4 x3 - 3 x T4(x) = 8 x4 - 8 x2 + 1 T5(x) = 16 x5 - 20 x3 + 5 x
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Laguerre Polynomials 

Hermite Polynomials 

H0(x) = 1 H1(x) = 2 x H2(x) = 4 x2 - 2

H3(x) = 8 x3 - 12 x H4(x) = 16 x4 - 48 x2 + 12 H5(x) = 32 x5 - 160 x3 + 120 x

 1  (x) L0
0   1  x -  (x) L0

1   2)  x 4  (x 
2

1
  (x) L 20

2 

 6)  x 18   x9   x(- 
6

1
  (x) L 230

3   24)  x 96   x72   x16  (x 
24

1
  (x) L 2340

4 



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Fall 2023

GAUSS  QUADRATURE  METHODS

Name Nodes and Weights

Gauss-Legendre 

Gauss-Chebyshev 

2 0.577350269 1.00000000

3
0
0.774596669

0.888888889
0.555555556

4
0.339981043
0.861136312

0.652145155
0.347854845

N  x i
w i

N ... 2, 1,  i        
N

2

1
 - i

 cos  x i 
















 iw  =    for all  i
N


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2 0.58578 64376
3.41421 35624

0.85355 33906
0.14644 66094

3
0.41577 45568
2.29428 03603
6.28994 50829

0.71109 30099
0.27851 77336
0.01038 92565

4

0.32254 76896
1.74576 11012
4.53662 02969
9.39507 09123

0.60315 41043
0.35741 86924
0.03888 79085
0.00053 92947

Gauss-Laguerre  

N x i w i
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2 0.70710 67811 0.88622 69255

3 0.
1.22474 48714

1.18163 59006
0.29540 89752

4 0.52464 76233
1.65068 01239

0.80491 40900
0.08131 28354

5
0.
0.95857 24646
2.02018 28705

0.94530 87205
0.39361 93232
0.01995 32421

Gauss-Hermite 

N  x i
w i
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