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Overview of Numerical Solution Methods for PDE’s

Finite Difference Method:  

Functions are represented by their values at certain grid points and derivatives are 

approximated through differences in these values.

Method of Lines (MOL):

All dimensions are discretized except one (time).

Finite Element Method (FEM): 

FEM encompasses all the methods for connecting many simple element equations 

over many small subdomains, named finite elements, to approximate a more 

complex equation over a larger domain. (CFD – Computational Fluid Dynamics)
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Gradient Discretization Method (GDM):

It is based on the separate approximation of a function and of its gradient.

Finite Volume Method: 

"Finite volume" refers to the small volume surrounding each nodal point on a mesh 

(grid structure). In the finite volume method, volume integrals in a partial differential 

equation that contain a divergence term are converted to surface integrals, using 

the divergence theorem. 

Spectral Method: 

The idea is to write down the solution of the differential equation as a sum of certain 

"basis functions" (for example, as a Fourier series, which is a sum of sinusoids) and 

then to choose the coefficients in the sum that best satisfy the differential equation.
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Meshfree Methods:

Simulation of some otherwise difficult types of problems, at the cost of extra 

computing time and programming effort.

Domain Decomposition Methods:

Solve a boundary value problem by splitting it into smaller boundary value 

problems on subdomains and iterating to coordinate the solution between adjacent 

subdomains. Overlapping methods, non-ovelapping methods, etc.

Multigrid (MG) Methods:

The main idea of multigrid is to accelerate the convergence of a basic iterative 

method by global correction from time to time, accomplished by solving a coarse 

problem.
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ELLIPTIC  PDE’s
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
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Laplace Equation:

Poisson Equation:

Helmholtz Equation:
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 
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0    and

0

x a

y b

 
 

Boundary conditions:   Given U  =>  Drichlet type

                                     Given derivative of U   =>   Neumann type

                                      Mixed 
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Pierre-Simon (Marquis de) Laplace

French Mathematician

1749 - 1827
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Siméon Denis Poisson

French Mathematician

1781 - 1840
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Hermann Ludwig Ferdinand von Helmholtz

German  Physicist

1821 - 1894
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Johann Peter Gustav Lejeune Dirichlet

German Mathematician

1805 - 1859
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John von Neumann

Hungarian (American) Mathematician

1903 - 1957
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Physical problems that has elliptic type (mostly steady-state) PDE’s,

 Temperature field

 Pressure field

 Electrostatic potential

 Stress distribution

 Velocity potential

 Torsion

 Membrane displacement 

 Others
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The existence of the solution of an elliptic PDE and its uniqueness depend heavily 

on the boundary conditions. This is true for analytical as well as numerical 

solutions.

Two conditions must exist for a well-posed problem:

 One unambiguous condition at every point of the boundary must be specified;

 The boundary should be closed. If part or all of the boundary is at infinity, the 

function should stay finite.
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Helmholtz Equation:
2 2

2 2

U U
 +  + f(x,y) U = g(x,y)

x y

 
 

Notes:

 This has only two dimensions. There may be a third dimension, z

 This is in Cartesian coordinates. Other coordinate systems exists such as 

cylindrical (radial direction), spherical (angular directions), curvy-linear, 

others

 There may be mixed boundary conditions (u as well as derivative(s) of u)



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Fall 2021

Example: Consider    U  + U  = 0       0  x  a   ,  0  y  bxx yy

Drichlet 

type

U(0,y) = Given     U(a,y) = Given

U(x,0) = Given     U(x,b) = Given 

Set: h = a / M     k = b / N

Using central differences:
   1, , 1, , 1 , , 1

2 2

u  - 2 u  + u u  - 2 u  + u
 +  = 0

h k
i j i j i j i j i j i j

     2 2 2 2
, 1, 1, , 1 , 1

where   1  i  M - 1    and     1    N - 1

2 h  + k  u  = k  u  + u  + h  u  + ui j i j i j i j i j

j

   

   

The given BC’s determine   u0,j ,  uM,j ,  ui,0 ,  and  ui,N

Boundary Conditions:
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x

y

ui,j ui+1,j
ui-1,j

ui,j-1

ui,j+1

i

j

h

k

Grid structure or mesh
in Cartesian coordinates
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   1, , 1, , 1 , , 1

2 2

u  - 2 u  + u u  - 2 u  + u
 +  = 0

h k
i j i j i j i j i j i j

If  h = k:     , 1, 1, , 1 , 1

1
u  =  u  + u  + u  + u

4i j i j i j i j i j

This means that the value of  u  at an interior node is equal to the average of  u  at 

four adjacent nodes. This is the well-known mean-value theorem for harmonic 

functions that satisfy the Laplace equation.
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If  h = k:     , 1, 1, , 1 , 1

1
u  =  u  + u  + u  + u

4i j i j i j i j i j

We have (M-1) (N-1) number of unknown ui,j values at the interior nodes when 

boundary conditions are given in terms of u’s (not derivatives).

It can be shown that the solution of the finite difference equation converges to the 

exact solution as h and k -> 0.

The proof of existence of a solution and its convergence is essentially based on the 

Maximum Modulus Principle. 

It follows from the finite difference equation that the value of  |u|  at any interior grid 

point does not exceed the value at any of the four adjoining nodal points.
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If  h = k:     , 1, 1, , 1 , 1

1
u  =  u  + u  + u  + u

4i j i j i j i j i j

The successive application of this argument at all interior grid points leads to the 

conclusion that  |u|  at the interior grid points cannot be greater than the maximum 

value on the boundary.

This is analogous to the Maximum Modulus Principle.

The solution obtained from this representation, like the exact solution, has no 

maxima or minima at interior nodes of the solution domain. If extreme values exist, 

they must lie on the boundary. 
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The maximum modulus principle or maximum modulus theorem for complex 

analytic functions states that the maximum value of modulus of a function defined 

on a bounded domain may occur only on the boundary of the domain. If the 

modulus of the function has a maximum value inside the domain, then the function 

is constant.

Thus, the maximum modulus principle states the nature of the local maximum of an 

analytic function within a domain. The maximum value could only be attained on the 

boundary unless the function is constant.

See OdtuClass for an e-book on complex numbers and complex functions.

See OdtuClass for an e-book on PDE’s.
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Example:    U  + U  = 0       0  x  1   ,  0  y  1xx yy

Boundary Conditions:
 
 

U(0,y) = y     U(1,y) = 0      on   0  y  1

U(x,0) = 0     U(x,1) = 0      on   0  x  1

u1,1=0 u1,2=1/3 u1,3=2/3 u1,4=?

u2,1=0

u3,1=0

u4,1=0

u2,2

u3,2

u4,2=0

u2,3

u3,3

u4,3=0

u2,4=0

u3,4=0

u4,4=0

x

y

Unkowns

Ambiguous BC
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Finite difference equations in natural order:

2,2

2,3

3,2

3,3

u-4    1    1    0 -1/3
u 1   -4    0    1 -2/3

  = 
 1    0   -4    1 u   0

 0    1    1   -4   0u

    
    
    
    
         

Natural order:  Left to right  ,  Bottom to top

Then, the coefficient matrix becomes diagonal (penta-diagonal in this case)

Solution:  u2,2 = 11/72      u2,3 = 16/72      u3,2 = 4/72      u3,3 = 5/72
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Example:  Given Helmholtz equation

f and g are continuous functions defined in the solution domain.

Boundary conditions: U(x,y) = q(x,y)   on the perimeter  R  of the solution domain

2U + f(x,y) U = g(x,y)

Define:  x i = i h      ,     y i = j h       i , j > 0   ,    The same spacing on  x  and  y

              u i , j = u (x i , y j)   ,     f i , j = f (x i , y j)     ,     g i , j = g (x i , y j)

   2
1, 1, , 1 , 1 ,2,

1
u  =  u  + u  + u  + u  - 4 u

h i j i j i j i j i ji j    

The corresponding difference equation is:

 2 2
1, 1, , 1 , 1 , , ,- u  - u  - u  - u  + 4 - h  f  u  = - h  gi j i j i j i j i j i j i j   
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Take:  h = 1 /10

There is one equation for every interior point. In matrix notation,  A U = B  where 

the matrices are:

2
2 2

2
3 2

4 - h  f          -1                    0                   -1                    0                0                     0                 0                  0

 -1                4 - h  f      

A  

2
4 2

      -1                     0                  -1                0                     0                 0                  0

  0                    -1                4 - h  f             0         
2

2 3

           0              -1                     0                 0                  0

 -1                     0                     0                4 - h  f          -1                 0          
2

3 3

         -1                 0                  0

  0                    -1                     0                    -1             4 - h  f         -1                    0                -1          
2

4 3

        0

  0                     0                    -1                      0                -1             4 - h  f            0                  0                -1

  0                     0     2
2 4                0                     -1                 0                  0              4 - h  f          -1                  0

 0                     0                      0                     2
3 4 0                -1                  0                  -1              4 - h  f         -1

 0                     0                      0                      0                  0                 2
4 4

 

-1                   0                 -1             4 - h  f

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
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2,2 1,2 2,1

3,2 3,1

4,2 5,2 4,1

2,3 1,3

3,3

4,3 5,3

2,4 1,4 2,5

3,4 3,5

4,4 5,4 4,5

- h g  + u  + u

- h g  + u

- h g  + u  + u

- h g  + u

B = - h g

- h g  + u

- h g  + u  + u

- h g  + u

- h g  + u  + u

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This is natural ordering. 

Note that  A  is symmetrical and diagonal . The main diagonal elements are dominant 

when  f  0.

2,2

3,2

4,2

2,3

3,3

4,3

2,4

3,4

4,4

u

u

u

u

U = u

u

u

u

u

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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PROPERTIES  OF  A  GOOD  ITERATIVE  METHOD

1. Simple algorithm;

2. Requires small storage memory on the computer by making use of the 
    sparseness of the coefficient matrix;

3. Rapid convergence to true solution;

4. Independent of initial guess, so self correcting (even the round-off  error).

ITERATIVE  METHODS
Point Iterative Methods

Block Iterative Methods
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Gauss-Seidel Iteration Method:

In numerical linear algebra, the Gauss–Seidel method, also known as 

the Liebmann method or the method of successive displacement, is an iterative 

method, similar to Jacobi’s method, used to solve a system of linear equations. It is 

named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig 

von Seidel. 

Though it can be applied to any matrix with non-zero elements on the diagonals, 

convergence is only guaranteed if the matrix is either strictly diagonally dominant, 

or symmetric and positive definite.

The name successive displacement is because the second unknown is determined 

from the first unknown in the current iteration, the third unknown is determined from 

the first and second unknowns.
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Johann Carl Friedrich Gauss

German Mathematician

1777 - 1855
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Philipp Ludwig von Seidel

German Mathematician

1821 - 1896



ME – 510   NUMERICAL METHODS FOR ME II

Prof. Dr. Faruk Arınç Fall 2021

Let us assume a set of linear equations in the matrix form is as follows:

A X = B

11 12 13 1n 1

21 22 23 2n 2

n1 n2 n3 nn n

a     a     a     ...   a x

a     a     a     ...   a x

...      ...      ...     ...    ...   ...

...      ...      ...     ...    ... ...

a     a     a     ...   a x

  
  
  
  
  
  

   

1

2

n

b

b

 = ...

...

b

  
  
  
  
  
  
  
  

11 1 12 2 1n n 1

21 1 22 2 2n n 2

n1 1 n2 2 nn n n

a  x  +  a  x  + ... + a  x  = b

a  x  +  a  x  + ... + a  x  = b

  ...     +     ...     + ... +    ...     = ...

a  x  +  a  x  + ... + a  x  = b
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If the diagonal elements are non-zero, each equation is rewritten for the 

corresponding unknown, that is, the first equation is rewritten with x1 on the left hand 

side, the second equation is rewritten with x2 on the left hand side and so on as 

follows.

1 12 2 1n n
1

11

2 21 1 2n n
2

22

n n1 1 n n-1 n-1
n

nn

b  - a  x  - ... - a  x
x  = 

a

b  - a  x  - ... - a  x
x  = 

a

...  =  ...     

b  - a  x  - ... - a  x
x  = 

a

i ia   0
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These equations can be rewritten in a 

summation form for any row i:

i i j j
1

i
i i

b  - a  x

x  = 
a





n

j
j n

To find xi’s, assume an initial guess for the xi’s (all the xi’s) and then use the rewritten 

equations to calculate the new estimates.

Always use the most recent estimates to calculate the next estimates, xi.

At the end of each iteration, calculate the absolute relative approximate error for 

each xi as
 a i

x  - x
 =  100

x


new old
i i

new
i

where new xi is the recently obtained value of xi , and old xi is the previous value of 

xi. When the absolute relative approximate error for each xi is less than the pre-

specified tolerance, the iterations are stopped. 
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Example

The upward velocity of a rocket is given at three different times in the following table:

Time, t (s) Velocity, V (m/s)

5 106.8

8 177.2

12 279.2

The velocity data is approximated by a polynomial as:

2
1 2 3V(t) = a  t  + a  t + a

Find the values of a1 a2 a3 using the Gauss-Seidel method.

Assume the initial guesses:  a1 = 1   a2 = 2   a3 = 5
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1 2 3

1 2 3

1 2 3

25 a  +  5 a  + a  = 106.8

64 a  +  8 a  + a  = 177.2

144 a  +  12 a  + a  = 279.2

2 3
1

1 3
2

1 2
3

106.8 - 5 a  - a
a  = 

25
177.2 - 64 a  - a

a  = 
8

279.2 - 144 a  - 12 a
a  = 

1

Assume the initial guesses: a1 = 1   a2 = 2   a3 = 5

2 3
1

106.8 - 5 a  - a 106.8 - (5) (2) - 5
a  =  =  = 3.672

25 25

1 3
2

177.2 - 64 a  - a 177.2 - (64) (3.672) - 5
a  =  =  = - 7.815

8 8

3 1 2a  = 279.2 - 144 a  - 12 a  = 279.2 - (144) (3.672) - (12) (-7.851) = - 155.36
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Iteration a1 a2 a3

1 3.672 -7.851 -155.36 

2 12.056 -54.882 -798.34 

3 47.182  -255.51 -3448.9 

4 193.33  -1093.4 -60072 

The solution estimates are 

not converging. 

The true solution is:  a1 = 0.29048   a2 = 19.690   a3 = 1.0857

The pitfall of most iterative methods is that they may or may not converge.

However, the solution to a certain classes of systems of simultaneous equations 

does always converge using the Gauss-Seidel method. This class of system of 

equations is where the coefficient matrix is diagonally dominant, that is

i i i j
1

a   a  



 
n

j
j i
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1 2 3

1 2 3

1 2 3

25 a  +  5 a  + a  = 106.8

64 a  +  8 a  + a  = 177.2

144 a  +  12 a  + a  = 279.2

25  <  5 + 1     NO 

8  <  64 + 1     NO

1  >  144 + 1   NO

The criteria are not satisified for any of the rows (equations). Therefore. it is always 

divergent no matter what the initial guesses are.

If the criterion is satisfied for most of the rows, there is possibly convergence. But, 

there is no guarantee.

If the critirion is not satified for most of the rows, there is possibly no convergence. 

But, there is no guarantee.
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Example

1

2

3

x 1

x  = 0

1x

   
   
   

     
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Gauss-Seidel Method for Elliptic PDE’s:

2U + f(x,y) U = g(x,y)

 2 2
1, 1, , 1 , 1 , , ,- u  - u  - u  - u  + 4 - h  f  u  = - h  gi j i j i j i j i j i j i j   

    
2

, 1, 1, , 1 , 1 ,2
,

1
u  =  u  + u  + u  + u  - h  g

4 - h  fi j i j i j i j i j i j
i j

Given Helmholtz Equation:

Corresponding Finite-difference Equation:

Gauss-Seidel Iterations, in natural order:

   
   

1 1 1 2
, 1, 1, , 1 , 1 ,2

,

1
u  =  u  + u  + u  + u  - h  g

4 - h  f
n n n n n
i j i j i j i j i j i j

i j

where n denotes iteration step
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Gauss-Seidel Method with SOR (Successive Over Relaxation):

Gauss-Seidel Iterations, in natural order:

   
   

1 1 1 2
, 1, 1, , 1 , 1 ,2

,

1
u  =  u  + u  + u  + u  - h  g

4 - h  f
n n n n n
i j i j i j i j i j i j

i j

Gauss-Seidel Iterations with SOR,  λ = relaxation factor between 1 and 2:

  1 1 1 2 2
, , 1, 1, , 1 , 1 , , ,2

,

u  = u  +  u  + u  + u  + u  - 4 - h  f  u  - h  g
4 - h  f

n n n n n n n
i j i j i j i j i j i j i j i j i j

i j

  
   

   *1 1
, , , ,u  = u  +  u  - un n n n
i j i j i j i j 

GS
estimate

GS with SOR
estimate
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Example (block iterative): U  + U  = 0       0  x  1   ,  0  y  1xx yy    

Boundary Conditions:
U(0,y) = 0     U(1,y) = 0      on   0  y  1

U(x,0) = x     U(x,1) = 0      on   0  x  1

 
 

u1,1=0 u2,1=1/3 u3,1=2/3 u4,1=?

u1,2=0

u1,3=0

u1,4=0

u2,2

U2,3

u2,4=0

U3,2

u3,3

u3,4=0

u4,2=0

u4,3=0

u4,4=0

y

x

Ambiguous BC

Choose two groups, or blocks:
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Initial guess: 
0 0 0 0
2,2 3,2 2,3 2,3u  = u  = u  = u  = 0 

Gauss-Seidel iterations with each group:

 

 

1 1 1 0 0 1 1
2,2 3,2 1,2 2,1 2,3 3,2 3,2

1 1 0 1 0 1 1
3,2 2,2 3,1 4,2 3,3 2,2 2,2

1 1 1 1 1
u  =  u  + u  + u  + u  =  u  + 0 +  + 0  = u  + 

4 4 3 4 12

1 1 2 1 1
u  =  u  + u  + u  + u  =  u  +  + 0 + 0  = u  + 

4 4 3 4 6

 
 
 

 
 
 

1
2,2

1
3,2

11
 1      - u 124   = 

11 u-       1
64

  
    
    

         
   

1 1
2,2 3,2

2 1
u  =      and    u  =  

15 5
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 

 

1 0 1 1 1 1 1
2,3 2,4 1,3 2,2 3,3 3,3 3,3

1 1 0 1 1 1 1
3,3 4,3 3,4 2,3 3,2 2,3 2,3

1 1 2 1 1
u  =  u  + u  + u  + u  =  0 + 0 +  + u  = u  + 

4 4 15 4 30

1 1 1 1 1
u  =  u  + u  + u  + u  =  0 + 0 + u  +  = u  + 

4 4 5 4 20

 
 
 

 
 
 

1
2,3

1
3,3

11
 1      - u 304   = 

1 1u-       1
4 20

  
    
    

         
   

1 1
2,3 3,3

11 14
u  =      and    u  =  

225 225
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