

ME-427 INTRODUCTION TO NUCLEAR ENGINEERING
PROBLEM SET 3

Due: 10 Dec 1984

Pr. 1. Starting from the Maxwellian distribution function, show that the most probable energy is

$$E_p = \frac{1}{2} k T$$

Solution

$$N(E) = \frac{2 \pi N_{\text{tot}} E^{1/2}}{(\pi k T)^{3/2}} e^{-E/kT}$$

The Maxwellian distribution function:

$$\frac{dN}{dE} = 0$$

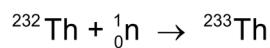
Most probable energy E_p occurs at

$$\frac{dN}{dT} = 0 = \frac{2 \pi N_{\text{tot}}}{(\pi k T)^{3/2}} \left[\frac{1}{2} E_p^{-1/2} e^{-E_p/kT} - E_p^{1/2} \frac{1}{k T} e^{-E_p/kT} \right]$$

$$E_p = \frac{1}{2} k T$$

Pr. 2. Show that Th-232 isotope is not fissile. At what neutron energy would you expect fission to occur?

Solution



Using Table 3.3 "Intro. to Nucl. Eng." by Lamarsh

B.E. of the last neutron in Th-232 = 5.1 MeV

Critical Energy for Fission of Th-232 = 6.5 MeV

Since B.E. of the last neutron $< E_{\text{crit}}$, the neutrons having zero kinetic energy do not induce fission. Therefore, Th-232 is not fissile.

$$\text{B.E.} + \text{KE}_n \geq E_{\text{crit}} \Rightarrow \text{KE}_n \geq 1.4 \text{ MeV}$$

Pr. 3. Find the diffusion coefficient and diffusion length of (a) Beryllium, (b) graphite, for monoenergetic 0.0253 eV neutrons.

Solution

$$D = \frac{1}{3 (\Sigma_t - \Sigma_s \mu_0)} , \quad \mu_0 = \frac{2}{3 A} , \quad L = \sqrt{\frac{D}{\Sigma_a}}$$

(a) Beryllium

$$\rho = 1.82 \text{ g/cm}^3 , \quad \sigma_a = 0.01 \text{ b} , \quad \sigma_s = 7 \text{ b} , \quad A = 9.01219 \text{ g/mole}$$

$$N_{Be} = \rho \frac{N_0}{A} = (1.82) \frac{6.023 \cdot 10^{23}}{9.01219} = 1.2165 \cdot 10^{23} \text{ atoms/cm}^3$$

$$\mu_0 = \frac{2}{3 A} = \frac{2}{3 (9.01219)} = 0.074$$

$$D = \frac{1}{3 (\Sigma_t - \Sigma_s \mu_0)} = \frac{1}{(3) (1.2165) (7.01 - (7) (0.074)) \cdot 10^{-1}} = 0.422 \text{ cm}$$

$$L = \sqrt{\frac{D}{\Sigma_a}} = \sqrt{\frac{0.422}{(0.01) (1.2165) \cdot 10^{-1}}} = 18.63 \text{ cm}$$

(b) graphite

$$\rho = 2.22 \text{ g/cm}^3 , \quad \sigma_a = 0.0034 \text{ b} , \quad \sigma_s = 4.8 \text{ b} , \quad A = 12.011 \text{ g/mole}$$

$$N_c = \rho \frac{N_0}{A} = (2.22) \frac{6.023 \cdot 10^{23}}{12.011} = 1.113 \cdot 10^{23} \text{ atoms/cm}^3$$

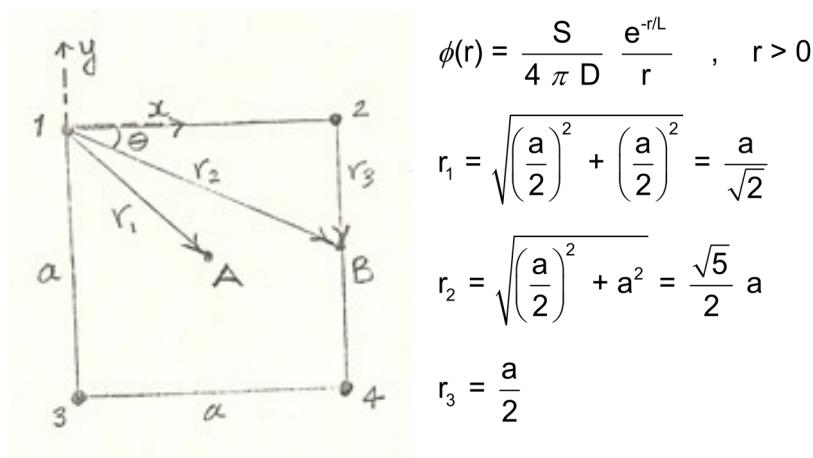
$$\mu_0 = \frac{2}{3 A} = \frac{2}{3 (12.011)} = 0.056$$

$$D = \frac{1}{3 (\Sigma_t - \Sigma_s \mu_0)} = \frac{1}{(3) (1.113) (4.8 + 0.0034 - (4.8) (0.056)) \cdot 10^{-1}} = 0.66 \text{ cm}$$

$$L = \sqrt{\frac{D}{\Sigma_a}} = \sqrt{\frac{0.66}{(0.0034) (1.113) \cdot 10^{-1}}} = 41.76 \text{ cm}$$

Pr. 4. Isotropic point sources each emitting S neutrons per second are placed in an infinite moderator at the four corners of a square of side a . Compute the flux and current at the midpoint of any side of the square and its center.

Solution



$$\phi(r) = \frac{S}{4\pi D} \frac{e^{-r/L}}{r}, \quad r > 0$$

$$r_1 = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2} = \frac{a}{\sqrt{2}}$$

$$r_2 = \sqrt{\left(\frac{a}{2}\right)^2 + a^2} = \frac{\sqrt{5}}{2} a$$

$$r_3 = \frac{a}{2}$$

$$\phi_A = 4 \left[\frac{S}{4\pi D} \frac{e^{-\frac{a}{\sqrt{2}L}}}{\frac{a}{\sqrt{2}}} \right] = \frac{\sqrt{2}S}{\pi D a} e^{-\frac{a}{\sqrt{2}L}}$$

Flux at point A:

$$\phi_B = 2 \frac{S}{4\pi D} \frac{e^{-\frac{a}{2L}}}{\frac{a}{2}} + 2 \frac{S}{4\pi D} \frac{e^{-\frac{\sqrt{5}a}{2L}}}{\frac{\sqrt{5}a}{2}} = \frac{S}{\pi D a} \left[e^{-\frac{a}{2L}} + \frac{1}{\sqrt{5}} e^{-\frac{\sqrt{5}a}{2L}} \right]$$

Flux at point B:

Current at point A: $\vec{J}_A = -D \nabla \phi(r) = 0$ due to symmetry

$$\vec{J}_B = -D \nabla \left[\frac{S}{2\pi D} \frac{e^{-\frac{r}{L}}}{r} \cos(\theta) \vec{i} \right]_{r=r_2}$$

Current at point B:

Since currents due to sources 2 and 4 and the j-components of currents from sources 1 and 3 cancel each other.

$$\vec{J} = -D \frac{S}{2\pi D} \frac{\frac{1}{L} e^{-\frac{r_2}{L}} r - e^{-\frac{r_2}{L}}}{r_2^2} \cos(\theta) \vec{i}, \quad r_2 = \frac{\sqrt{5}}{2} a, \quad \cos(\theta) = \frac{a}{\frac{\sqrt{5}}{2} a} = \frac{2}{\sqrt{5}}$$

$$\text{Substitute: } \vec{J} = \frac{2S}{5\pi} e^{-\frac{\sqrt{5}a}{2L}} \left[\frac{2}{\sqrt{5}aL} + \frac{4}{5a^2} \right] \frac{2}{\sqrt{5}} \vec{i}$$

$$\vec{J} = \frac{2S}{5\pi} e^{-\frac{\sqrt{5}a}{2L}} \left[\frac{1}{aL} + \frac{2}{\sqrt{5}a^2} \right] \vec{i}$$

Pr. 5. A point source emits S neutrons per second isotropically in an infinite vacuum. Show that

the neutron flux is given by the expression $\phi = \frac{S}{4 \pi r^2}$ where r is the distance from the source. What is the neutron current density vector at the same point?

Solution

$$\text{Flux} = \frac{\text{Neutrons}}{(\text{unit area}) (\text{unit time})}$$

(a)

Since the medium is vacuum, there is no loss of neutrons due to absorption, scattering, etc.

$$\text{Hence, } \phi(r) = \frac{S \text{ neutrons/second}}{\text{Area}} = \frac{S}{4 \pi r^2}$$

(b)

Since there is no scattering collisions in the medium, only the neutrons from the source will contribute to the value of neutron current density vector, \mathbf{J} .

$$\text{Hence, } \mathbf{J} = \frac{S}{4 \pi r^2} \mathbf{i}$$

Pr. 6. The neutron flux in a spherical medium of radius 50 cm is given by

$$\phi = 5 \cdot 10^{13} \frac{\sin(0.0620 r)}{r} \text{ neutrons/cm}^2 \cdot \text{s}$$

where r is measured from the center of the sphere. The diffusion coefficient is 0.8 cm.

- (a) What is the maximum value of the flux?
- (b) Calculate the neutron current density as a function of r .
- (c) How many neutrons escape from the medium per second?

Solution

$$\phi(r) = 5 \cdot 10^{13} \frac{\sin(0.0620 r)}{r} \text{ neutrons/cm}^2 \cdot \text{s}$$

(a)

$$\phi = \phi_{\max} \text{ at } r = 0$$

$$\phi_{\max} = \lim_{r \rightarrow 0} \left[5 \cdot 10^{13} \frac{\sin(0.0620 r)}{r} \right] = 5 \cdot 10^{13} \lim_{r \rightarrow 0} \left[\frac{\sin(0.0620 r)}{r} \right] = (5 \cdot 10^{13}) (0.0628)$$

$$\text{Hence } = 3.14 \cdot 10^{12} \text{ neutrons/cm}^2 \cdot \text{s}$$

(b)

$$\vec{J}(r) = -D \frac{d\phi}{dr} = -0.8 \left[5 \cdot 10^{13} \left(\frac{0.028 r \cos(0.0628 r) - \sin(0.0628 r)}{r_2} \right) \right] \vec{i}$$

$$\vec{J}(r) = -4 \cdot 10^{13} \left[\left(\frac{0.028 r \cos(0.0628 r) - \sin(0.0628 r)}{r_2} \right) \right] \vec{i}$$

(c)

No of neutrons escaping:

$$\begin{aligned} J(R) (4 \pi R^2) &= -16 \pi \cdot 10^{13} R^2 \left[\frac{(0.0628)(50) \cos((0.0628)(50)) - \sin((0.0628)(50))}{R^2} \right] \\ &= 1.58 \cdot 10^{15} \text{ neutrons/s} \end{aligned}$$

Pr. 7. A sphere of moderator of radius R contains uniformly distributed sources emitting S neutrons/cm².s.

(a) Show that the flux in the sphere is given by

$$\phi(r) = \frac{S}{\Sigma_a} \left[1 - \left(\frac{R+d}{r} \right) \frac{\sinh\left(\frac{r}{L}\right)}{\sinh\left(\frac{R+d}{L}\right)} \right]$$

(b) How many neutrons leak from the sphere per second?

d is the extrapolation distance = $0.71 \lambda_{tr}$.

Solution

Uniformly distributed sources S neutrons/cm².s

Diffusion equation: $D \nabla^2 \phi - \Sigma_a \phi + S = 0$

$$\frac{d\phi}{dr} = 0$$

BC's: 1) at $r = 0$ ϕ is finite or

2) at $r = R + d$ $\phi = 0$

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\phi}{dr} \right) - \frac{1}{L^2} \phi = -\frac{S}{D} \quad \Rightarrow \quad \frac{d^2\phi}{dr^2} + \frac{2}{r} \frac{d\phi}{dr} - \frac{1}{L^2} \phi = -\frac{S}{D}$$

$$\text{Replace } \phi(r) = \frac{y(r)}{r} \quad \Rightarrow \quad \frac{d^2y}{dr^2} - \frac{1}{L^2} y = -\frac{S}{D} r$$

$$\text{Solution: } y(r) = C_1 \sinh\left(\frac{r}{L}\right) + C_2 \cosh\left(\frac{r}{L}\right) + \frac{S L^2}{D} r$$

$$\text{Or } y(r) = C_1 \frac{\sinh(r/L)}{r} + C_2 \frac{\cosh(r/L)}{r} + \frac{S L^2}{D}$$

$$\text{BC 1} \Rightarrow C_2 = 0$$

$$\text{BC 2} \Rightarrow 0 = C_1 \frac{\sinh\left(\frac{R+d}{L}\right)}{R+d} + \frac{S L^2}{D}$$

$$C_1 = -\frac{S L^2}{D} \frac{R+d}{\sinh\left(\frac{R+d}{L}\right)}$$

$$\frac{S L^2}{D} = \frac{S}{\Sigma_a} \Rightarrow \phi(r) = \frac{S}{\Sigma_a} \left[1 - \frac{R+d}{r} \frac{\sinh(r/L)}{\sinh((R+d)/L)} \right]$$

(b)

$$\text{No of neutrons leaking per second} = J(R) (4 \pi R^2)$$

$$\begin{aligned} &= -D (4 \pi R^2) \left\{ -\frac{S}{\Sigma_a} \frac{R+d}{\sinh((R+d)/L)} \left[\frac{\cosh(r/L) \frac{r}{L} - \sinh(r/L)}{r^2} \right]_{r=R} \right\} \\ &= \frac{4 \pi D S}{\Sigma_a} \frac{R+d}{\sinh((R+d)/L)} \left[\frac{R \cosh(R/L)}{L} - \sinh(R/L) \right] \end{aligned}$$

Pr. 8. A radioactive sample with half life $T_{1/2}$ is placed at a point where the thermal neutron flux is ϕ_t . Show that the sample disappears as the result of its own decay and by neutron absorption with an effective half life given by

$$\left(\frac{1}{T_{1/2}} \right)_{\text{eff}} = \frac{1}{T_{1/2}} + \frac{\sigma_a \phi_t}{\ln(2)}$$

where σ is the average thermal absorption coefficient of the sample.

Solution

$$\begin{aligned} \left(\frac{dN}{dt} \right)_{\text{eff}} &= (\text{Rate of its own decay}) + (\text{Rate of neutron absorption}) \\ &= -\lambda N - \phi_t \Sigma_a = -N (\lambda + \phi_t \sigma_a) \end{aligned}$$

$$N(t) = N_0 e^{-(\lambda + \phi_t \sigma_a) t}$$

$$\frac{N_0}{2} = N_0 e^{-(\lambda + \phi_t \sigma_a) (T_{1/2})_{\text{eff}}} \Rightarrow -\ln(2) = -(\lambda + \phi_t \sigma_a) (T_{1/2})_{\text{eff}}$$

$$\frac{1}{(T_{1/2})_{\text{eff}}} = \frac{\lambda}{\ln(2)} + \frac{\phi_t \sigma_a}{\ln(2)}$$

$$\text{Since } \lambda = \frac{\ln(2)}{T_{1/2}} \Rightarrow \frac{1}{(T_{1/2})_{\text{eff}}} = \frac{1}{T_{1/2}} + \frac{\phi_t \sigma_a}{\ln(2)}$$