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OPTIMIZATION

Problems with an objective function and constrain(s)

Example 1: We want to construct a box whose base length is 3 times the base
width. The material used to build the top and bottom cost 100 TL/m?
and the material used to build the sides cost 60 TL/m2. If the box
must have a volume of 5 m3, determine the dimensions that will

minimize the cost to build the box.

Minimize:  C=100(21w)+60(2wh+21Ih)
=600 w” + 480 w h

Constraint: 5=|wh=3w2h

{=3w
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Example 2: A manufacturer needs to make a cylindrical can that will hold 1.5 liters
of liquid. Determine the dimensions of the can that will minimize the

amount of material used in its construction.

~_ ! Minimize: A=2zrh+2zr? incm?

Constraint: 1500=7r*h incm?®
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Example 3: A window is being built and the bottom is a rectangle and the top is a
semicircle. If there is 12 meters of framing material, what must the

dimensions of the window be to let in the most light?

Maximize: A=2hr+ % 7T r?

Constraint: 12=2h+2r+ 7

2Ar
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Problem: Given a function, f(x), unimodal in a certain range, find the minimum (or

the maximum) in this range

Find x where f(x) is minimum

Then, find the corresponding f(x)
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Non-Unimodal function
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f(x) is unimodal in (a,b), i.e., only one minimum or maximum
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Procedure

= Choose two points, c and d, in (a,b)

* Decide in which bracket (range) the minimum (or maximum) lies, (a,d) or (c,b)
* Choose that smaller bracket and update a and b

" Repeat above and home in to the minimum or maximum
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Question:

* How do you choose the points, ¢ and d?

Answer:

= Anyway you like.

In order to save time, you may use golden ratio.
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The golden section (or ratio) is a certain length that is divided in such a way that
the ratio of the longer part to the whole is the same as the ratio of the shorter

part to the longer part.

r: = _=

A B J5 -1
A+B A 2

0.618034

ris the positive root of equation r+r—-1=0

_A+B _
v A

% Sl

)
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Golden Rectangle:

E F C
=

Read: https://en.wikipedia.org/wiki/Golden_ratio
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Golden Ratio (Section) Search

Definitions: Golden ratiois: r= \62' I 0.61803398874989

A function f (x) is unimodal on [a,b] if there exist a unique
number p in [a,b] such that
_ _ » f(x) is decreasing on [a,p] and increasing on [p,b] (for a
Unimodal Function o
minimum) or
» f(x) is inreasing on [a,p] and decreasing on [p,b] (for

a maximum)

If f(x) is known to be unimodal on [a,b], it is possible to replace the interval with

a subinterval on which f (x) takes on its minimum (or maximum) value.
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The golden search requires that two interior points
c=a+(1-r)(b-a)
and
d=a+r(b-a)
be used where r is the golden ratio. This results in

a<c<d<b.

The condition that f(x) is unimodal guarantees that the functional values, f(c) and
f(d), are less than max [ f(a),f (b)] when there is a minimum, or more than

min [f(a),f (b)] when there is a maximum.
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For the case when there is a minimum:

If f(c)<f(d),thenthe minimum must occur in the subinterval [a,d] and we replace
b with d and continue the search in the new subinterval.

If f(d)<f(c), then the minimum must occur in [c,b] and we replace a with ¢ and

continue the search.

For the case when there is a maximum:

If f(c)>f(d),then the maximum must occur in the subinterval [a,d] and we replace
b with d and continue the search in the new subinterval.

If f(d)>f(c), then the maximum must occur in [c,b] and we replace a with ¢ and

continue the search.
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Example on Golden Ratio Search

Find the minimum of the unimodal function f (x ) = x? —sin(x) in [0,1] using golden

section search.
0,2

/

0,1

0,0

'0,3 T (I T T T 1
-0,2 0,0 0,2 0,4 0,6 0,8 1,0
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The search range is reduced to [0, 0.618]:

0,00

-0,05

-0,10

-0,15
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~1L_

T T T T T T
0,00 0,10 0,20 0,30 0,40 0,50 0,60
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The search range is reduced to [0.236 , 0.618]:

-0,18

-0,19

-0,20 /

-0,21

-0,22 \
-0,23 \

\—/

-0,24 T T T T T T T
0,240 0,290 0,340 0,390 0,440 0,490 0,540 0,590
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The complete solution:

K a, C, d, b, f(c,) f(d,)

0 0.0000000 | 0.3819660 | 0.6180340 | 1.0000000 | -0.22684748 | - 0.19746793
1 0.0000000 | 0.2360680 | 0.3819660 | 0.6180340 | -0.17815339 | - 0.22684748
2 0.2360680 | 0.3819660 | 0.4721360 | 0.6180340 | -0.22684748 | - 0.23187724
3 10.38195660 | 0.4721360 | 0.5278640 | 0.6180340 | - 0.23187724 | - 0.22504882
4 |10.38195660 | 0.4376941 | 0.4721360 | 0.5278640 | - 0.23227594 | - 0.23187724
5 10.38195660 | 0.4164079 | 0.4376941 | 0.4721360 | - 0.23108238 | - 0.23227594
6 0.4164079 | 0.4376941 | 0.4508497 | 0.4721360 | -0.23227594 | - 0.23246503
21 | 0.4501574 | 0.4501730 | 0.4501827 | 0.4501983 | - 0.23246558 | - 0.23246558
22 | 0.4501730 | 0.4501827 | 0.4501886 | 0.4501983 | - 0.23246558 | - 0.23246558
23 | 0.4501827 | 0.4501886 | 0.4501923 | 0.4501983 | - 0.23246558 | - 0.23246558
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Fibonacci Numbers

Leonardo of Pisa, better known as Fibonacci, was born in Pisa, Italy, about 1175
AD. He was known as the greatest mathematician of the middle ages. Completed
in 1202, Fibonacci wrote a book titled Liber abaci on how to do arithmetic in the
decimal system. Although it was Fibonacci himself that discovered the sequence
of numbers, it was French mathematician, Edouard Lucas, who gave the actual
name of "Fibonacci numbers" to the series of numbers that was first mentioned
by Fibonacci in his book. Since this discovery, it has been shown that Fibonacci

numbers can be seen in a variety of things.
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Fibonacci (Leonardo of Pisa)
Italian Mathematician

1170 — 1250
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Leonardo Pisano (1170-ca. 1250) is more widely known by his nickname,
Fibonacci. He traveled widely in the Mediterranean region with his father, a
diplomat in the service of Pisa. Fibonacci wrote a number of texts, the most famous
of which is probably Liber abbaci, which appeared in 1202. This contains the

famous problem that leads to the Fibonacci sequence:

A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How
many pairs of rabbits can be produced from that pair in a year if it is supposed that
every month each pair begets a new pair which from the second month on
becomes productive?

A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How
many pairs of rabbits can be produced from that pair in a year if it is supposed that
every month each pair begets a new pair which from the second month on

becomes productive?
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By charting the population of rabbits, Fibonacci discovered a number series
from which one can derive the Golden Mean. The beginning of the sequence: 0,
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc ... Each number is the sum of the two

preceding numbers.

Dividing each number in the series by the one which precedes, it produces a

ratio which stabilizes around 1.618034

Explicit formula for nt" Fibonacci number:

(2) \/g[;j e DE J5

F(n) =
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If you count the number of petals in most flowers, you will find that the answer is a

Fibonacci number. For example, an iris (susen c¢icegi) has 3 petals, a primrose
(cuha cicegi) 5, a delphinium (hezaren cicegi) 8, ragwort 13, an aster (dalya) 21,
daisies (papatya) 13, 21, or 34, and Michaelmas daisies 55 or 89 petals. All

Fibonacci numbers.

If you look at a sunflower (aycicegdi), you will see a beautiful pattern of two spirals,
one running clockwise, the other counterclockwise. Count those spirals, and for
most sunflowers you will find that there are 21 or 34 running clockwise and 34 or
95 counterclockwise, respectively - all Fibonacci numbers. Less common are
sunflowers with 55 and 89, with 89 and 144, and even 144 and 233 in one

confirmed case.
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Other flowers exhibit the same phenomenon; the wildflower Black-Eyed Susan is

a good example.

Similarly, pine cones have 5 clockwise spirals and 8 counterclockwise spirals, and

the pineapple has 8 clockwise spirals and 13 going counterclockwise.

Read: http://www.maa.org/devlin/devlin_06_04.html

Read: «The Beauty of Numbersy», a pdf article on the Moodle
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