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CLASSIFICATION  OF  DIFFERENTIAL  EQUATIONS

Differential Equations Ordinary ODE

Partial PDE

ODE Linear y ' + A x2 y = f (x)

Non-linear (y ')2 + A y y ' = f (x)

ODE Homogeneous ..... = 0

Non-homogeneous ..... = f (x)  0
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ODE Homogeneous ..... = 0

Non-homogeneous ..... = f (x)  0

System of ODE's y ' = f (x, y(x), z(x))
z ' = g (x, y(x), z(x))

ODE Initial-value Problem depending on the conditions

Boundary-value Problem

Physical Problems Propagation Problem open domain

Equilibrium Problem closed domain

Eigenvalue Problem

Solution Methods Marching Numerical Method

Equilibrium Numerical Method
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LIPSHITZ  CONDITION

Theorem:  on existence of a solution for first-order ODE:

 y)(t, f  
 td

(t)y  d


If  f (t,y) is continuous on  a  t  b,  and there exists a constant  L  such that

 f (t,y) - f (t,z)     L  y - z 

for all  t  [a , b],  and all real  y  and  z,  then the initial-value problem

 y  )(ty ith               wy)(t, f  
 td

(t)y  d
00 

where  t0  [a , b]  possesses a unique solution.  This is called Lipschitz condition.
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 Rudolf Otto Sigismund Lipschitz ( 1832-

1903) was born in Königsberg, Germany. 

He entered the University of Königsberg at 

the age of 15, and completed his studies at 

the University of Berlin, from which he was 

awarded a doctorate in 1853. By 1864, he 

was a full professor at the University of 

Bonn, where he remained the rest of his 

professional life. The Lipschitz condition 

first appeared in a paper on the existence 

of solutions to differential equations, which 

was published in book form as part of an 

1877 treatise on analysis.
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Examples of ODE’s

Newton’s 2nd law of motion
dv

F = m  
dt

Fourier’s law of heat conduction
dT

q = - k  
dx

Swinging pendulum

2

2

d θ g
 +  sin(θ) = 0

Ldt
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Examples of ODE’s

Mass-spring-damper system
2

2

d y dy
m  + c  + k y = 0

dtdt

Collector of a solar heater

2
dy dy

x  - 2 y  = 0 
dx dx

 
 
 



ME – 361   NUMERICAL METHODS FOR ENGINEERS

Prof. Dr. Faruk Arınç Fall 2021

2 n+1
(n+1)0

0 0 0 0 0

(t - t ) (t - t)
y(t)  y(t ) + (t - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


TAYLOR  SERIES

2 n+1
''1 0 1 0

1 0 1 0 0 0 0

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


0 0

dy(t)
  f(t,y)    ,     y(t ) = y

dt


2 n+1
n+12 0 2 0

2 0 2 0 0 0 0

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


2 n+1
n+1n 0 n 0

n 0 n 0 0 0 0

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


Too much error because t0 and tn are too far apart
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2 n+1
(n+1)0

0 0 0 0 0

(t - t ) (t - t)
y(t)  y(t ) + (t - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


RUNNING  TAYLOR  SERIES

2 n+1
n+11 0 1 0

1 0 1 0 0 0 0

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


0 0

dy(t)
  f(t,y)    ,     y(t ) = y

dt


2 n+1
n+12 1 2 1

2 1 2 1 1 1 1

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


2 n+1
n+1n n-1 n n-1

n n-1 n n-1 n-1 n-1 n-1

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!

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2 n+1
(n+1)0

0 0 0 0 0

(t - t ) (t - t)
y(t)  y(t ) + (t - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


RUNNING  TAYLOR  SERIES

2 n+1
(n+1)

n+1 n n n n

h h
y   y  + h f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


2 n+1
(n+1)n+1 n n+1 n

n+1 n n+1 n n n n

(t  - t ) (t  - t )
y(t )  y(t ) + (t  - t ) f(t ,y ) +  y''(t ) + ... +  y ( )

2! (n + 1)!


n n

2 n+1
(n+1)

n+1 n n n

t  , y

h  f  f h
y   y  + h f(t ,y ) +   +  f  + ... +  y ( )

2!  t  y (n + 1)!


  
    

0 0

dy(t)
  f(t,y)    ,     y(t ) = y

dt

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Given:

Choose h = Δt

Question: y(t) = ?  

1 2 ny(t ) = ?   ,   y(t ) = ?   ,  ...  ,   y(t ) = ?  

t

y(t)

t0 t1 t2

y0

y(t2)
y(t1)

  0 0

dy(t)
 = f t,y(t)      ,    y(t ) = y  

dt

t3

y(t3)

0 0

1 1

2 2

n n

y(t ) = y    IC

y(t )  y  = ?

y(t )  y  = ?

...

y(t )  y  = ?






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Given:   0 0

dy(t)
 = f t,y(t)      ,    y(t ) = y  

dt

 
0 0

y t

y t

dy(t) = f t,y(t)  dt     
0 0

t t

0 0

t t

y(t) - y  = f t,y(t)  dt     =>     y(t) = y  + f t,y(t)  dt 

   
n+1 n+1

n n

t t

n+1 n n+1 n

t t

y(t ) - y(t ) = f t,y(t)  dt     =>     y  = y  + f t,y(t)  dt 

   
n+1 n+1

n n

t t

n+1 n n+1 n n n

t t

y  = y  + f t,y(t)  dt     =>     y  = y  + f t ,y dt 

Δt = h

?

?
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Leonhard Euler

Swiss Mathematician

1707 - 1783
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Leonhard Euler (1707-1783) was one of the two greatest mathematicians of the 

post-Newton age, the other being Carl Friedrich Gauss. Euler was born in Basel, 

Switzerland, and educated at the University of Basel, at first with an eye toward 

following in his father's career as a Lutheran minister. With the assistance of his 

tutor and mentor Johann Bernoulli, however, he was able to convince his father to 

let him pursue a career in mathematics. In 1727 Euler joined the St. Petersburg 

Academy of Sciences in Russia, where he remained until 1741, at which time he 

joined the Berlin Academy of Sciences at the invitation of the Prussian king, 

Frederick the Great. After some disputes with the monarch, Euler left Berlin in 1766 

and returned to St. Petersburg.
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Euler's contributions to mathematics are almost unmatched in their breadth. He 

published an enormous amount of material, in a wide variety of areas, including 

infinite series, special functions (a field of study that he practically invented), 

number theory, complex variables, and hydrodynamics. His name is attached to 

countless results in mathematics, from Euler's formula relating the trigonometric 

functions to complex exponentials, to the Euler-Cauchy differential equations, to 

Euler's formula relating the number of sides, edges, and vertices in a polyhedron. 

His influence on notation is still felt today, as it was Euler who introduced e, π, and i 

= √-1 into the literature as standard symbols, in addition to the use of Ʃ for denoting 

summations, and cos and sin for the cosine and sine of an angle. Euler's collected 

works, published between 1911 and 1975, encompass 72 volumes!
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The method for numerically solving differential equations that bears his name was 

apparently first presented in the period 1768-1769, in the two-volume work known 

as «Institutiones calculi integralis». The theoretical basis for the convergence of the 

method was laid down by Augustin Louis Cauchy in the mid-1800s and by Rudolf 

Lipschitz in the late 1800s. 
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EULER’S  METHOD: n+1 n n ny  = y  + h f(t ,y )

2

local n+1 n

h
E  =  y''( )     ,      t  <  < t

2!
 

2

total n

n

n 0

1

h
E  =  y''( )

2!
h h

         =  y''( ) h   Max (y'') h 
2! 2

h
            Max (y'') (t  - t )

2

          h



 







 

Local Error:

Total or Overall Error:

Euler’s method is an order 1 method, O(1) or O(h1) , i.e., the overall error is 

proportional to the first power of the step size, h.
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Geometrical Interpretation of Euler’s method

y(t1)
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Accumulation of Error in Euler’s method

y(t1)

y(t2)
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0
d y (t)

 = - a y (t)      ,     y (0) = 1 = y
d t

 e  y  ta -
exact 

EXAMPLE  ON  EULER'S  METHOD

Euler's Method: y n + 1 = y n + h f (t n , y n)

n 0 1 2 3 4 5 10 100 1000

t / a 0 0.1 0.2 0.3 0.4 0.5 1.0 10.0 100.0

y exact 1 0.905 0.819 0.741 0.670 0.607 0.368 4.5 10 - 5 3.7 10 - 44

y Euler 1 0.900 0.810 0.729 0.656 0.590 0.349 2.6 10 - 5 1.0 10 - 46
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MODIFICATIONS  OF  EULER'S  METHOD

Euler's Method: y n + 1 = y n + h f (t n , y n)

 
2

y  y
  ,  

2

h
  t fh   y  y 1 n n

nn1 n 





 

 


Mod. 1 y n + 1 = y n + h f (t n + 1 , y n + 1)

Mod. 2

f(t,y) is assumed to remain constant 

at the end of the interval

f(t,y) is assumed to remain 

constant at an average value

yn+1 is implicit, not explicit   =>  root finding?
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n 0 1 2 3 4 5 10 100 1000

t / a 0 0.1 0.2 0.3 0.4 0.5 1.0 10.0 100.0

y exact 1 0.905 0.819 0.741 0.670 0.607 0.368 4.5 10 - 5 3.7 10 - 44

y Euler 1 0.900 0.810 0.729 0.656 0.590 0.349 2.6 10 - 5 1.0 10 - 46

y end 1 0.909 0.826 0.751 0.683 0.621 0.386 7.3 10 - 5 4.1 10 - 42

y middle 1 0.905 0.819 0.741 0.670 0.606 0.368 4.6 10 - 5 3.4 10 - 44

EXAMPLE  ON  MODIFICATIONS  OF  EULER'S  METHOD

 1  (0)y      ,      (t)y  a -  
 td

(t)y  d
  e  y  ta -

exact 
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Runge-Kutta Methods

Running Taylor Series:

2 3 n+1
(n+1)

n+1 n n n n

h h h
y   y  + h y'(t ) +  y''(t ) +  y''(t ) + ... +  y ( )

2! 3! (n + 1)!


n n

2 3
(3)

n+1 n n n

t  , y

h  f  f dy h
y   y  + h f(t ,y ) +   +   +  y ( )

2!  t  y dt 3!
  

    

Runge-Kutta order two:

3
* * (3)

n+1 n n n

h
y   y  + a h f(t ,y ) + b h f(t ,y ) +  y ( )

3!
 n n

*
nt  = t  +  hn

*
n n ny  = y  +  h f(t ,y )n
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Carl David Tolmé Runge

German Mathematician

1856 – 1927
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Carl Runge (1856-1927) was bom in Bremen and educated at the University of 

Munich. He originally intended to study literature but after less than two months 

switched to mathematics and physics. In 1877 he began attending the University of 

Berlin, where he received a doctorate in 1880, on differential geometry. He held 

academic positions at Hanover and Göttingen and retired in 1925. Much of his 

professional work was more in physics than in mathematics, but he did make 

contributions in the numerical solution of differential equations (Runge-Kutta 

methods) and polynomial interpolation theory. The paper in which he outlined the 

theory behind the so-called "Runge example" appeared in 1901, under the title 

«Über empirische Funktionen und die Interpolation zwischen äquidistanten 

Ordinaten». 
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Martin Wilhelm Kutta (1867-1944) 

studied at Breslau and Munich, in 

addition to a year spent in Britain at 

Cambridge. Most of his professional 

career was spent in Stuttgart. 

Building on Runge's original idea 

(first presented in an 1894 article), 

Kutta published his version of the 

Runge-Kutta methods in 1901. 
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Runge-Kutta Methods

There are four unknowns: a, b, α, and β

Four relations are necessary to determine a, b, α, and β 

Equate both sides, keeping the same local error:

2
* *

n n n n n n
, ,

h  f  f
y  + h f  +   +  f  = y  + a h f  + b h f(t ,y )

2!  t  y

  
 
   n n n n

n
t y t y

Expand                  in terms of Taylor series around (tn,yn) and

equate the coefficients of the same powers of h. This gives three relations, not four

* *
nf(t ,y )n

a + b = 1

α b = 1/2

β b = 1/2

Choose one of the fractions arbitrarirly, that sets the other 

three unknowns.
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Second-Order Runge-Kutta Methods

Heun’s Method:

 n  1 n n n n n

h h
y   y   h f t  +  , y  +  f t  , y   

2 2

        

The Modified Euler’s Method:

 n  1 n n n n 1 n n n

h
y   y     f (t  , y )   f t  , y   h f (t  , y  

2      
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Karl Heun

German Mathematician

1859 - 1929



ME – 361   NUMERICAL METHODS FOR ENGINEERS

Prof. Dr. Faruk Arınç Fall 2021

Geometrical Interpretation of Heun’s method
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Geometrical Interpretation of the Modified Euler’s method
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Running Taylor Series:

2 3 4 5
(4) (5)

n+1 n n n n n

h h h h
y   y  + h y'(t ) +  y''(t ) +  y'''(t ) +  y (t ) +  y ( )

2! 3! 4! 5!


Runge-Kutta order 4:

5
* * ** ** *** *** (5)

n+1 n n n

h
y   y  + a h f(t ,y ) + b h f(t ,y ) + c h f(t ,y ) + c h f(t ,y ) +  y ( )

5!
 n n n n n n

*
nt  = t  +  hn

*
n n n  y  = y  + h f(t ,y )n

Local Error

**
nt  = t  +  hn

**
n n n  y  = y  + h f(t ,y )n

***
nt  = t  +  hn

**
n n n  y  = y  + h f(t ,y )n

- 10 unknowns

-  Equate the Coefficients

   of the same power of h

-  9 relations
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Fourth-Order Runge-Kutta Methods

Method Attributed to Runge: 

  K  K 2  K 2  K 
6

h
  y  y 4321n1n 

 )y , (t f  K nn1   K 
2

h
  y  ,  

2

h
 t f  K 1nn2 






 

 K 
2

h
  y  ,  

2

h
 t f  K 2nn3 






   )Kh  y  ,h   (t f  K 3nn4 

This method reduces to Simpson’s one-third rule when  f (t,y) = f (t).
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Method Attributed to Kutta: 

  K  K 3  K 3  K 
8

h
  y  y 4321n1n 

 )y , (t f  K nn1   K 
3

h
  y  ,  

3

h
 t f  K 1nn2 






 

 Kh  K 
3

h
 - y  ,  

3

h 2
 t f  K 21nn3 






   )Kh   Kh  - Kh  y  ,h   (t f  K 321nn4 

This method reduces to Simpson’s 3/8 rule when  f (t,y) = f (t).
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Runge-Kutta-Gill Method: 

 K  K 
2

1
  1 2  K 

2

1
 - 1 2  K 

6

h
  y  y 4321n1n 




























 )y , (t f  K nn1   K 
2

h
  y  ,  

2

h
 t f  K 1nn2 






 

 Kh  
2

1
 - 1 Kh  

2

1
  

2

1
 -  y  ,  

2

h
 t f  K 21nn3 



























 )Kh  
2

1
  1  Kh  

2

1
 y  ,h   (t f  K 32nn4 










This is one of the most widely used fourth-order methods. The constants are 

selected to reduce the amount of storage required in the solution of a large 

number of simultaneous first-order differential equations.



ME – 361   NUMERICAL METHODS FOR ENGINEERS

Prof. Dr. Faruk Arınç Fall 2021

EXAMPLE  ON  RUNGE-KUTTA  METHODS

yn+1 = yn + h f (tn , yn) Euler's Method: 

Heun's Method  n  1 n n n n 1 n n n

h
y   y     f (t ,y )   f t  , y + h f (t  , y  

2     

The Runge-Kutta Order 4  ) K  K2   K2  (K 
6

h
   y y 4321n1  n 

K1 = f (tn , yn)  )K 
2

h
  y  ,  

2

h
  (t f  K 1nn2 

 ) K
2

h
    y,  

2

h
  (t f  K 2nn3   ) Kh    y, (t f  K 3n1  n4  
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n 0 1 2 3 4 5 10 100 1000

t / a 0 0.1 0.2 0.3 0.4 0.5 1.0 10.0 100.0

y exact 1 0.90484 0.81873 0.74082 0.67032 0.60653 0.36788 4.54 10 - 5 3.72 10 - 44

y Euler 1 0.900 0.810 0.729 0.656 0.590 0.349 2.6 10 - 5 1.0 10 - 46

y R-K 2 1 0.905 0.819 0.741 0.671 0.607 0.369 4.6 10 - 5 4.45 10 - 44

y R-K 4 1 0.90484 0.81873 0.74082 0.67032 0.60653 0.36788 4.54 10 - 5 3.72 10 - 44

 1  (0)     y ,      (t)a y  -  
 td

(t) y d


 e  y a t -
exact 
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STABILITY  OF  RUNGE-KUTTA  METHODS

d y
 = λ y           IC:  y (0) = 1 

d t

y (t) = eλ t  Exact Solution:

Numerical Solution: yn+1 = yn P ( h)

Euler's Method   h   1  y y n1n 

Runge-Kutta Order 2  
2

h) (
  h   1  y y

2

n1n 






 


Runge-Kutta Order 4  
! 4

h) (
  

! 3

h) (
  

2

h) (
  h   1  y y

432

n1n 






 







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-2

-1

0

1

2

3

4

5

6

7

8

-3 -2 -1 0 1 2

exp(x)
1+x+x*x/2

1+x+x*x/2+x**3/6
1+x+x*x/2+x**3/6+x**4/24
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EXAMPLE  ON  STABILITY  OF  RUNGE-KUTTA  METHODS

 1 - t 10 - y 10  
 td

 yd


 t - e A  (t)y  t10

y (0) = 0 

Given:

General Solution

Initial Condition

Exact Solution: y (t) = - t      ,     A = 0 
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t Exact Runge-Kutta Order 4

 h = 0.01

0.2 - 0.2 - 0.2

0.4 - 0.4 - 0.39998

0.6 - 0.6 - 0.59986

0.8 - 0.8 - 0.79896

1.0 - 1.0 - 0.99232

1.2 - 1.2 - 0.11134

1.4 - 1.4 - 0.98318

1.6 - 1.6 1.4702

1.8 - 1.8 20.815

2.0 - 2.0 164.59
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t Exact Runge-Kutta Order 4

 h = 0.01 h = 0.001

0.2 - 0.2 - 0.2 - 0.19998

0.4 - 0.4 - 0.39998 - 0.39988

0.6 - 0.6 - 0.59986 - 0.59918

0.8 - 0.8 - 0.79896 - 0.79394

1.0 - 1.0 - 0.99232 - 0.95529

1.2 - 1.2 - 0.11134 - 0.86994

1.4 - 1.4 - 0.98318 1.0378

1.6 - 1.6 1.4702 16.410

1.8 - 1.8 20.815 131.26

2.0 - 2.0 164.59 981.07
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t Exact Runge-Kutta Order 4

 h = 0.01 h = 0.001 h = 0.0001

0.2 - 0.2 - 0.2 - 0.19998 - 0.19986

0.4 - 0.4 - 0.39998 - 0.39988 - 0.39920

0.6 - 0.6 - 0.59986 - 0.59918 - 0.59483

0.8 - 0.8 - 0.79896 - 0.79394 - 0.76311

1.0 - 1.0 - 0.99232 - 0.95529 - 0.72925

1.2 - 1.2 - 0.11134 - 0.86994 0.79465

1.4 - 1.4 - 0.98318 1.0378 13.316

1.6 - 1.6 1.4702 16.410 107.03

1.8 - 1.8 20.815 131.26 800.08

2.0 - 2.0 164.59 981.07 5921.3
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A  GENERAL  DICTUM  IN  NUMERICAL  MATH

If anything at all is known about the errors in a process, that knowledge can be 

exploited to improve the process.

 h a -  L (h) 
1k

k 2
k 2






L: Objective to be evaluated 

 (h): Known function of chosen  h 

... 3, 2, 1,  n         
2

h
   1) , (n D

n









 
2

h
  1) ,(k  A    L 1) , (n D

1k

k 2

n










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 m) , 1-(n  D
1 - 4

1
 - m) , (n  D

1 - 4

4
  1)m , (n D

mm

m

Richardson’s Extrapolation

D (1 , 1)

D (2 , 1) D (2 , 2)

D (3 , 1) D (3 , 2) D (3 , 3)

D (4 , 1) D (4 , 2) D (4 , 3) D (4 , 4)

 Accuracy increases as we move down the table in any column because  h  is 

decreased by half at each step.

 Accuracy increases as we move to the right in any row because of order-of-

magnitude decrease in  h.

 Note that smaller  h  does not always leads to higher accyracy. The accumulation 

of round-off error eventually catches up with the process.
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Example on Richardson's Extrapolation

Solving Integrals

4 4
x

0 0

 f (x)  dx  2  dx  21.640426  Exact solution: 

Richardson's extrapolation
table:

One Panel (n = 1) 34.0

Two Panels  (n = 2) 25.0 22.0

Four Panels  (n = 4) 22.5 21.666 21.6444

Percent Errors:

One Panel (n = 1) - 57.1 %

Two Panels  (n = 2) - 15.5 % - 1.7 %

Four Panels  (n = 4) - 4.0 % - 0.12 % - 0.02 %
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Example on Richardson's Extrapolation

Solving ODE

 ... 3, 2, 1, k     ,     
2

0.25
  h

1 -k 


Given:

Use Euler's method: 

d y
  - y     ,    y(0) = 1 

d t


Exact solution: y (0.25) = 0.7788008 



ME – 361   NUMERICAL METHODS FOR ENGINEERS

Prof. Dr. Faruk Arınç Fall 2021

n Richardson's extrapolation table

1 0.75

2 0.765625 0.78125

4 0.772476 0.7793274 0.7786865

8 0.7756999 0.7789236 0.778789 0.7788036

n Percent Errors

1 3.7

2 1.7 - 0.3

4 0.8 - 0.07 0.015

8 0.4 - 0.02 0.0015 - 0.00036
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Selecting step size, h:

Given ODE:   y )    y(t,      y),(t  f  
 td

 yd
00 

Exact (unknown) solution at  tn:   y )y(t *
n 

Local error from step  tn-1  to  tn  with step size h1:
1p

1h C  E 

Numerical solution of order p at tn:
1p

1
*

h , n h C   yy
1



Repeat the numerical solution with step size :
2

h
 h 1

2 

Numerical solution of order p at tn: 2

* p 1
n , h 2y  y   2 C h  
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1p
1

*
h , n h C   yy

1


2

* p 1
n , h 2y  y   2 C h  

Combine these two equations and solve for  y*:  
2 - 1

 y2 - y
  y

p

h , n
p

h , n* 21

Error in  yn , h1:
  1p

1p

h , nh , n
p

h , n
*
n h C  

1 - 2

 y- y 2
   y-  y E 12

1



1p
1

h , nh , n

p

p

h

 y- y
  

1 - 2

2
  C 12

   h  
h

 y- y
  

1 - 2

2
  h C  E 1p

max1p
1

h , nh , n

p

p
1p

maxmax
12  




 
2 1

1
p p 1

max 1 p
n , h n , h

 2  - 1
h   h   

2  y  - y

  
 
  

Maximum step size for local error
not to exceed  ε.
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The above procedure is rather expensive when we want to check h at every step 

of the calculation. We need to have an inexpensive method with less number of 

calculations.

Consider two methods of order p and q such that  p+1 ≤ q

Subtract side by side:

)O(h  h A   yy 2p1p
1p

*
np , n


 

)O(h  h  B  yy 2q1q
1q

*
nq , n


 

Define:

p 1 p 2
n , q n , p p 1y  - y   A  h   O(h ) 

 

Therefore: n n , q n , pE   y  - y   This is the local error in yn,p
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Runge-Kutta-Fehlberg Order 4

 F 
5

1
 - F 

4104

2197
  F 

2565

1408
  F 

216

25
h   y  y 5431n1 n 






 

 )y , (t f  F nn1   Fh  
4

1
  y ,h  

4

1
  t f  F 1nn2 






 

 Fh  
32

9
  Fh  

32

3
  y  ,h   

8

3
  t f  F 21nn3 






 







  321nn4 Fh  

2197

 7296
  Fh  

2197

7200
  Fh  

2197

1932
  y  ,h   

13

12
  t f  F







  4321nn5 Fh  

4104

845
 - Fh  

513

3680
  Fh  8  Fh  

216

439
  y  ,h    t f  F
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Runge-Kutta-Fehlberg Order 5

 F 
55

2
  F 

50

9
 - F 

56430

28561
  F 

12825

6656
  F 

135

16
h   y  y 65431n1 n 






 

 )y , (t f  F nn1   Fh  
4

1
  y ,h  

4

1
  t f  F 1nn2 






   Fh  

32

9
  Fh  

32

3
  y  ,h   

8

3
  t f  F 21nn3 






 







  321nn4 Fh  

2197

7296
  Fh  

2197

7200
  Fh  

2197

1932
  y  ,h   

13

12
  t f  F







  4321nn5 Fh  

4104

845
 - Fh  

513

3680
  Fh  8  Fh  

216

439
  y  ,h    t f  F







  54321nn6 Fh  

40

11
 - Fh  

4104

1859
  Fh  

2565

3544
  Fh  2  Fh  

27

8
  y  ,h   

2

1
  t f  F
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Multi-step Methods

Multi-step (multi-procedure) methods require information on the solution of more 

than one point, and hence they are not self-starting.

- They are however more efficient (faster) than R-K methods.

- You may even hope that they may solve the instability problem of R-K methods.

Example using Euler’s method:

  2
0 0 n+1 n n n

1 0 0 0

dy(t)
 = f t,y(t)   ,   y(t ) = y       =>      y  = y  + h f(t ,y ) + O(h )

dt
                                                             y   y  + h f(t ,y )

                                          



2 1 1 1                   y   y  + h f(t ,y )

                                                             etc.



If y1 is also known (besides y0), what can you do for a better estimation of y2?

Local error



ME – 361   NUMERICAL METHODS FOR ENGINEERS

Prof. Dr. Faruk Arınç Fall 2021

Example using Euler’s method:

  0 0 1 1

2

dy(t)
 = f t,y(t)   ,   y(t ) = y   and  y(t )  y

dt
                              y  = ?



Somehow known very accurately, maybe 
from a very accurate numerical calculation

Find y2 (and the rest of the points, y3, y4, etc.) fitting a first degree polynomial to 

f(t0,y0) and f(t1,y1), extend to the next panel, and find the area.

 2 1 1 1 0 0 1 1 0

h h
y  = y  +  3 f(t ,y ) - f(t ,y )  = y  +  (3 f  - f )

2 2

n+1 n n n-1

h
y  = y  +  (3 f  - f )     ,     n = 1, 2, 3, ...

2

Local truncation error:
3

local

5
E  =  h  f''( )

12
 How do you find this?
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 dy
 = f t,y

dt

0t 1t 2t

t

0f

1f

 f t,y

A

h

   1 1 0 1 0

h h
A = h f  + f  - f  = 3 f  - f

2 2

h

 2 1 1 1 0

h
y  = y  + A = y  + 3 f  - f

2

2 1y  = y  + A 



ME – 361   NUMERICAL METHODS FOR ENGINEERS

Prof. Dr. Faruk Arınç Fall 2021

n+1 n n n-1

h
y  = y  +  (3 f  - f )     ,     n = 1, 2, 3, ...

2

n+1 n n n-1 n-2

h
y  = y  +  (23 f  - 16 f  + 5 f )     ,     n = 2, 3, 4, ...

12

n+1 n n n-1 n-2 n-3

h
y  = y  +  (55 f  - 59 f  + 37 f  - 9 f )     ,     n = 3, 4, 5, ...

24

Order two:

Order three:

Order four:

Adams-Bashfort Open Formulae:

)('' f h 
12

5 3 Local truncation error:

Local truncation error:

Local truncation error:

)(''' f h 
24

9 4 

)(f h 
720

251 (4)5 

=>    O(2)

=>    O(3)

=>    O(4)
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John Couch Adams

British Astronomer

1819 - 1892
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John Couch Adams ( 1819-1892) was born in Cornwall, England, and educated at 

St. John's College, Cambridge. Something of a child prodigy in mathematics, at 

Cambridge he compiled an extraordinary record and was awarded several prizes. 

While still an undergraduate he decided to study the irregularities in the orbit of the 

planet Uranus, to see if they could be explained by the gravitational attraction of an 

as-yet unknown eighth planet. Adams predicted the new planet's position, but, 

probably because of his youth, the Cambridge Observatory took no action so the 

credit for the discovery of Neptune went to Urbain Le Verrier, although the question 

of priority here is still controversial. Adams briefly held a position as professor of 

mathematics at St. Andrews College before being named Professor of Astronomy 

and director of the Cambridge Observatory. 
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Francis Bashforth

British Mathematician

1819 - 1912
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Francis Bashforth (1819-1912) was born in Thumscoe, England, the son of a 

farmer, and attended St. John's College of Cambridge at the same time as Adams. 

Although he had been ordained as an Anglican priest in 1851, upon graduation 

Bashforth worked first as a civil engineer and surveyor for a railroad company, and 

then (in 1864) obtained a position as professor of applied mathematics at what 

evolved into the Royal Artillery College. Although Bashforth made numerous 

important contributions to the study of ballistics, in 1872 an army reorganization left 

him with such a reduced position that he resigned and became a parish rector. The 

Adams-Bashforth method comes from a joint study of capillary action that the two 

men wrote in 1883. 
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ADAMS-BASHFORT OPEN FORMULAE

)(' f h 
2

1 2 

2

3

2

1
 - )('' f h 

12

5 3 

12

23

12

16
 -

12

5
)(''' f h 

24

9 4 

24

55

24

59
 -

24

37

24

9
 - )(f h 

720

251 (4)5 

720

1901

720

2774
 -

720

2616

720

1274
 -

720

251
)(f h 

1440

475 (5)6 

1440

4277

1440

7923
 -

1440

9982

1440

7298
 -

1440

2877

1440

475
 - )(f h 

60480

19087 (6)7 

Order of the 
Formula (n)

k = 1
 n1

k = 2
 n 2

k = 3
 n 3

k = 4
 n 4

k = 5
 n 5

k = 6
 n 6

Local Truncation 
Error, O(hn+1)

1 1

2

3

4

5

6

)O(h  f h   y  y 1n
n

1 k 
1k-inki1i




  
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EXAMPLE ON MULTI-STEP METHODS

IC:  y(0) = 1 

   Exact Solution: y(t) = e sin(t)

Use Heun's method to start and 3-point Adams-Bashfort open formula to proceed:

d y
  y cos(t) 

d t


Heun's Method  n  1 n n n n 1 n n n

h
y   y     f (t  , y )   f t  , y + h f (t  , y  

2     

 p
n 1 n n n-1 n-2

h
y   y    23 f  - 16 f   5 f  

12   

Adams-Bashfort open order 3:
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t y (t) Heun's

Exact y n % Error

0 0 1.0

0.25 1.28070 1.27639 0.34

0.5 1.61515 1.60492 0.63

0.75 1.97712 1.95996 0.87

1.0 2.31978 2.29591 1.03

1.25 2.58309 2.55358 1.14

1.5 2.71148 2.67858 1.21

1.75 2.67510 2.64153 1.25

2.0 2.48258 2.45139 1.26
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t y (t) Heun's Adams-Bashfort

Exact y n % Error y n % Error

0 0 1.0 1.0

0.25 1.28070 1.27639 0.34

0.5 1.61515 1.60492 0.63

0.75 1.97712 1.95996 0.87 1.97172 0.27

1.0 2.31978 2.29591 1.03 2.32236 - 0.11

1.25 2.58309 2.55358 1.14 2.58942 - 0.25

1.5 2.71148 2.67858 1.21 2.71148 - 0.04

1.75 2.67510 2.64153 1.25 2.66317 0.45

2.0 2.48258 2.45139 1.26 2.45679 1.04
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Note that, the order of the starter method is better be greater than the order of 

the rest of the solution in order to reduce the beginning errors which may 

accumulate later on.

This is not so in the above example.

Example: Error calculation of Adams-Bashfort open formulae: 

Prove the following

  3
1 1

h 5
y  = y  +  3 f  - f  +  h  f ''( )

2 12n n n n  

  4
1 1 2

h 9
y  = y  +  23 f  - 16 f  + 5 f  +  h  f '''( )

12 24n n n n n   
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Predictor-Corrector Procedures

The idea behind the predictor-corrector methods is to use a suitable combination of 

an explicit and an implicit technique to obtain a method with better convergence 

characteristics.

1 n n n ny  = y  + h f(t ,y ) = y  + h f
p
n nPredictor:

Corrector: 1 n n n+1 1

h
y  = y  +  f(t ,y ) + f(t ,y

2
c p
n n n   

Here is an example using Euler’s method:



ME – 361   NUMERICAL METHODS FOR ENGINEERS

Prof. Dr. Faruk Arınç Fall 2021

 dy
 = f t,y

dt

0t 1t 2t

t

0f

1f

 f t,y

A

h

   1 1 0 1 0

h h
A = h f  + f  - f  = 3 f  - f

2 2

h

 2 1 1 1 0

h
y  = y  + A = y  + 3 f  - f

2

2 1y  = y  + A 
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 dy
 = f t,y

dt

0t 1t 2t

t

0f

1f

 f t,y

A

h h

 p
2 1 1 1 0

h
y  = y  + A = y  + 3 f  - f

2

 p
2 2 2f  = f t ,yp

2f
p

 c p
2 1 new 1 1 2

h
y  = y  + A  = y  + f  + f

2
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Order of the 
Formula (n)

k = 1
 n1

k = 2
 n 2

k = 3
 n 3

k = 4
 n 4

k = 5
 n 5

k = 6
 n 6

Local Truncation Error, 
O(hn+1)

1 1

2

3

4

5

6

ADAMS CLOSED FORMULAE

)O(h  f h   y  y 1n
n

1 k 
1k-inki1i




  

)(' f h 
2

1
 - 2 

2

1

2

1 )('' f h 
12

1
 - 3 

12

5

12

8

12

1
 - )(''' f h 

24

1
 - 4 

24

9

24

19

24

5
 -

24

1
)(f h 

720

19
 - (4)5 

720

251

720

646

720

264
 -

720

106

720

19
 - )(f h 

1440

27
 - (5)6 

1440

475

1440

1427

1440

798
 -

1440

482
1440

173
 -

1440

27
)(f h 

60480

863
 - (6)7 
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Order Predictor-Corrector Formulae Local Error

2

3

4

ADAMS-MOULTON PREDICTOR-CORRECTOR METHODS

  f - f 3 
2

h
  y  y 1-nnn

p

1n 

  y - y 
6

1
  E c

1n

p

1n1n  
  f  f 

2

h
  y  y n

p

1nn

c

1n  

  f 5  f 16 - f 23 
12

h
  y  y 2-n1-nnn

p

1n 

  y - y 
10

1
  E c

1n

p

1n1n  
  f - f 8  f 5 

12

h
  y  y 1-nn

p

1nn

c

1n  

  f 9 - f 37  f 59 - f 55 
24

h
  y  y 3-n2-n1-nnn

p

1n 
  y - y 

270

19
  E c

1n

p

1n1n  

  f  f 5 - f 19  f 9 
24

h
  y  y 2-n1-nn

p

1nn

c

1n  
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Forest Ray Moulton

American Astronomer

1872 - 1952)
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Forest Ray Moulton (1872-1952), the youngest of eight children, was born on the 

family farm between Grand Rapids and Traverse City, Michigan. (The land had 

been given to his father as part of his bounty for serving in the Union army during 

the Civil War.) Forest—so named because he was bom in a log cabin in the forest

—was educated at Albion College in Michigan, and received a Ph.D. in astronomy 

from the University of Chicago, in 1899. He is credited, along with his colleague 

Thomas C. Chamberlain, with formulating the planetesimal hypothesis for the 

formation of the solar system. During World War I, Moulton did ballistics research 

for the U.S. Army at Aberdeen Proving Ground, Maryland, and it was during this 

period that he refined the original work of Adams and Bashforth into what we now 

know as the Adams-Moulton method for solving initial value problems. 
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ILL-conditioned ODE:
2d y 2

  3 y - t      ,    y(0) =  
d t 27



General solution:
2

3 t 2 t 2
y(t)  C e  +  +  +  

3 9 27
t

Particular solution:
2t 2 t 2

y(t)  +  +  
3 9 27

 Parasitic solution

Example:
1

2 1

du
  2 u (x)    ,   u (0) = 3 

dx
 2

1 2

du
  2 u (x)    ,   u (0) = - 3 

dx


General Solution:
2x -2x

1u (x)  A e  + B e 2x 2
2u (x)  A e  - B e x

Apply initial conditions: A = 0  and B = 3

The component with the positive exponential will dominate with any numerical 

method
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Stiff ODE: Any ODE with a rapidly decreasing transient solution requires an 

extremely small step size for an accurate solution.

 dy(t) dg(t)
   y(t) - g(t)  +      ,    0   and   g(t) smooth and slowly varying 

d t d t
  

Solution:   λty(t)  y(0) - g(0)  e  + g(t)  h must be very very small

Will soon be insignificant besides g(t)

But, (λ h) will govern the stability. So h must be small as well.

For any resonable h for g(t) will give small (λ h).
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For a system of equations 

the eigenvalues of A correspond to λ. If all the eigenvalues have negative real parts, 

the solution will converge to g(t) as t goes to infinity.  

 dy(t) dg(t)
 = A y(t) - g(t)  + 

dt dt

Example:
du dv

 = 98 u + 198 v        = - 99 u + 199 v
dt dt

Exact solution:

- t -100 t

- t -100 t

u(t) = 2 e  - e

v(t) = - e  + e Rapidly decaying terms 
requiring a very small step size

One answer to stiff ODE’s is to use implicit methods:  n+1 n n+1 n+1y  = y  + h f t ,y  
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There exist other methods of solving ODE’s which we will not discuss in detail.

One such method is called Bulirsch-Stoer method. It combines two ideas:

1. Richardson’s extrapolation to the limit; and 

2. Rational function (Pade) approximation rather than power (Taylor) series.

See the book «Numerical Recipies».
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SYSTEM  OF  ODE’s

Consider:   0

d y(x)
 = f x, y(x), z(x)       ,    y(0) = y

d x

  0

d z(x)
 = g x, y(x), z(x)       ,    z(0) = z

d x

All the methods that we have discussed so far are applicable.

Euler’s Method:  1y  = y  + h f x , y , zn n n n n

 1 = z  + h g x , y , zn n n n nz 
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SYSTEM  OF  ODE’s

Runge-Kutta Order Four:  1 1 2 3 4

h
y  = y  +  K  + 2 K  + 2 K  + K

6n n

 1 1 2 3 4

h
z  = z  +  L  + 2 L  + 2 L  + L

6n n

 1K  = f x , y , zn n n  1L  = g x , y , zn n n

2 1 1

h h h
K  = f x + , y + K , z + L

2 2 2n n n
 
 
 

2 1 1

h h h
L  = g x + , y + K , z + L

2 2 2n n n
 
 
 

3 2 2

h h h
K  = f x + , y + K , z + L

2 2 2n n n
 
 
 

3 2 2

h h h
L  = g x + , y + K , z + L

2 2 2n n n
 
 
 

 4 1 3 3K  = f x , y +h K , z + h Ln n n  4 1 3 3L  = g x , y +h K , z + h Ln n n



ME – 361   NUMERICAL METHODS FOR ENGINEERS

Prof. Dr. Faruk Arınç Fall 2021

HIGHER-ORDER  ODE’s

 
2

2

d y(x)
 = f x, y(x), y'(x)

d x
Second-order ODE:

Two conditions must be specified for the solution: 

At  x = 0    y(0) = y0   and   

0

d y
 = y'(0)

d x x

Initial-value problem

At  x = 0    y(0) = y0   and   
Boundary-value problem

At  x = L    y(L) = yL 

Note that derivative conditions may also be specified at the boundaries
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SECOND-ORDER ODE   -   INITIAL VALUE PROBLEM

 
2

2

d y(x)
 = f x, y(x), y'(x)

d x
At  x = 0    y(0) = y0   and   

0

d y
 = y'(0)

d x x

Define  0

dy(x)
 = z(x) = g(x, y, z)     ,     z(0) = z

d x

  0

d z(x)
 = f x, y(x), z(x)    ,    y(0) = y

d x

All the methods discussed so far are applicable.
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SECOND-ORDER ODE   -   INITIAL VALUE PROBLEM

Given: y '' = - y y (0) = 0 y '(0) = 1

Exact solution: y (t) = sin(t) y '(t) = cos(t)

t 0 0.1 0.2 0.3 0.4 0.5 1.0

yexact 0 0.0998 0.1987 0.2955 0.3894 0.4794 0.8415

yEuler 0 0.100 0.200 0.299 0.396 0.440 0.940

y 'exact 1.0 0.995 0.980 0.995 0.921 0.878 0.540

y 'Euler 1.0 1.0 0.990 0.970 0.940 0.900 0.660
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BOUNDARY-VALUE  PROBLEMS

 
2

2

d y(x)
 = f x, y(x), y'(x)

d x
Second-order ODE:

At  x = 0    y(0) = y0   and   

Boundary-value problem
At  x = L    y(L) = yL 

Note that derivative conditions may also be specified at the boundaries

There are two methods of solution:   Matrix Method  -  f is a linear function of y

                                                                                       and all derivatives of y

                                                          Shooting Method -  A trial-error solution
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Matrix Method

     
2

2

d y(x)
 = f x, y(x), y'(x)       ,     y a  =       ,      y b  = 

d x
 Given:

Select a set of equally-spaced points, x0, x1, ..., xn, xn+1, on the interval [a,b]

b - a
x  = a + i h      ,     h =       ,      0  i  n + 1 

n + 1i  

Approximate the derivatives using standart central-difference formula

     ' 1 1
y x + h  - y x - h y  - y

y x    =  
2 h 2 h

  i i

       '' 1 1
2 2

y x + h  - 2 y x  + y x - h y  - 2 y  + y
y x    =  

h h
  i i i
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The problem becomes:

0

1 1 1 1
2

y  =     (given)

y  - 2 y  + y y  - y
 = f x , y ,       ,     1  i  n 

2 hh

y =     (given)

       
 

i i i i i
i i





This is usually a non-linear system of equations in n unkowns, y1, y2, ..., yn.

The solution of such a sytem of non-linear equations is seldom easy. 

IF the “f” function is linear, only then the solution is easier because we can 

form a matrix:
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Example

Solve the following second-order ODE with the given boundary conditions:

2
 0.2 

2
1

d y dy
- 2  + y = e      ,   y(0) = 1   ,    = - y

dx dx
x

x





Divide the solution domain into eight subintervals, and use the central difference 

approximation for all the derivatives in the given ODE and the boundary conditions. 

Compare the numerical solution with the exact solution:

Exact solution: 
 0.2  

2 2 e
y = - 0.2108 e  + 0.1238 e  +  

0.92

xx x 

Note: When there is an exact solution, numerical solution becomes unnecessary.
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2
 0.2 

2

d y
- 2  + y = e

dx
xGiven ODE:

Corresponding finite difference equation:

 0.2 1 1
2

y  - 2 y  + y
- 2  + y  = e    ,    i = 1, 2, ..., 7

h
ixi i i

i
  

 
 

Re-arrange:    0.2 2 2
1 1- 2 y  + 4 + h  y  - 2 y  = h  e     ,    i = 1, 2, ..., 7ix

i i i


 

Boundary conditions: y0 = 1   at  x = 0 

9 7
8

1

y  - ydy
   = - y

dx 2 hx

 y9 = y7 – 2 h y8=>
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2

2

2

4+h     -2         0         0          0         0          0           0

 -2      4+h      -2         0          0         0          0           0

 0        -2       4+h      -2          0         0 
2

2

         0           0

 0         0         -2       4+h       0          0          0           0

 0         0          0         -2       4+h      -2          0           0

 0         0          0     2

2

     0        -2        4+h      -2           0

 0         0          0          0         0          -2       4+h        -2

 0         0          0          0         0           0         -4       4+4

1

2

3

4

5

6

7

8

0.22

1
0.22

2
0.22

3

0.22
4

0.22
5

0.22
6

0.227

2 0.228

2+h  ey
h  ey

h  ey

y h  e
  =   

y h  e
y h  e
y h  e
yh+h h  e

x

x

x

x

x

x

x

x

















                                                                  

where h = 1/8  and xi = i h  for  i = 1, 2, …, 8
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Matrix Exact

y0 = 1.00000 1.00000

y1 = 0.94323 0.94317

y2 = 0.88620 0.88612

y3 = 0.82867 0.82857

y4 = 0.77036 0.77025

y5 = 0.71101 0.71087

y6 = 0.65031 0.65014

y7 = 0.58797 0.58778

y8 = 0.52366 0.52344
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Shoothing to hit the target by adjusting the aim (slope) of the gun or a rifle.
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Shooting Method

 Applicable to both linear & non-linear Boundary Value (BV) problems.

 Easy to implement

 No guarantee of convergence

 Approach:

• Convert a BV problem into an initial value problem

• Solve the resulting problem iteratively (trial & error)

• Linear ODEs allow a quick linear interpolation

• Non-linear ODEs will require an iterative approach similar to our root finding 

techniques.
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Cooling Fin Example

h = heat transfer coefficient

k = thermal conductivity

P = perimeter of fin

A = cross sectional area of fin

T∞ = ambient temperature

 
2

2

d T h P
 -  T - T  = 0

k Adx 

T(x = 0) = T0

T(x = L) = TL

L

Analytical solution:

2 h P
m  = 

k A
(x) = T(x) - T 

2
2

2

d θ
 - m  θ = 0

dx
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L

2 h P
m  = 

k A

(x) = T(x) - T 

2
2

2

d θ
 - m  θ = 0

dx

m x -m x
1 2θ( ) = C  e  + C  ex

Boundary Conditions:

0 0 0

L L L

T(0) = T      =>    θ(0) = T  - T  = θ

T(L) = T      =>    θ(L) = T  - T  = θ




Apply BC’s and solve for C1 and C2

   L 0

0

θ θ  sinh(m x) + sinh m (L - x)θ(x)
 = 

θ sinh(m L)
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L

 
2

2

d T h P
 -  T - T  = 0

k Adx 

BC’s: T(0) = T0

          T(L) = TL

1. Re-write as two first-order ODE’s: 0

dT
 = z    ,    T(0) = T

dx

dz h P
 =  (T - T )    ,    z(0) = ?

dx k A 

2. We need an initial value for z. Guess z1



ME – 361   NUMERICAL METHODS FOR ENGINEERS

Prof. Dr. Faruk Arınç Fall 2021

L

3. Integrate the two equations using RK4 and z1; 

this will yield a solution at x = L

4. Integrate the two equations again using a 2nd 

guess for z(0) = z2.

5. Linearly interpolate the z results to obtain the 

correct initial condition

(Note: this only works for Linear ODEs.)

Example:  1 2
3 2 L 2

1 2

z  - z
z  = z  +  T  - T  

T  - T
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