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Multiple Roots

We study two classes of functions for which there is additional difficulty in
calculating their zeros. The first of these are functions in which the desired zero

has a multiplicity greater than 1. What does this mean?
Let a be a zero of the function f(x), and imagine writing it in the factored form
f(x) = (x- a)™ h(x)

with some integer m = 1 and some continuous function h(x) for which h(a) # O.

Then, we say that a is a root of f(x) = 0 with multiplicity m.
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For example, the function
2

f(x) = e -1

has x = 0 as a root of multiplicity with m = 2.

Define  h(x) = 5 , x=#0

Using MacLaurin series expansion, prove that M h(x) = 1

X—>

Thus, x = is a root of f(x) = x2 h(x) = 0 with multiplicity m = 2
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If the function f(x) is m-times differentiable around a, then we can differentiate

f(x) = (x- a)" h(x)

m times to obtain an equivalent formulation of what it means for the root to have

multiplicity m.

For an example,

f'(x) =3 (x-a)® h(x) + (x- @)’ h'(x) = (x - a)* h,(X)
f(x) = (x - ) hy(x)

fla) = 0

f'()=0

f'"(¢)=0 —> x=ais asimple root of f "(x).
f"(ax) # 0
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In general, a is a zero of f(x) of multiplicity m if and only if

fla) = ...=f™(a)=0
f™(a) = 0

Difficulties with Multiple Roots

= Methods such as Newton’s method and the secant method converge more
slowly than for the case of a simple root;
= There is a large interval of uncertainty in the precise location of a multiple root

on a computer or calculator.
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We can regard Newton’s method as a fixed-point iteration:

2006 900 =x- e
Substitute  f(X) = (x - @)™ h(x)
90 = x - o) he)
m(x-a) h(x)+(Xx-a)" h'(x)
o . (x-a)h
m h(x) + (X - ) h '(x)
AN 1 m-1
We may use this to show g'(a)=1- -

For m > 1, this is nonzero, and therefore Newton’s method is only linearly

convergent. Similar results hold for the secand method.

Prof. Dr. Faruk Aring Spring 2023



o
T

’ I Bilkent University ME - 361 NUMERICAL METHODS FOR ENGINEERS

Noise in Function Evaluation

In the following figures, the noise as measured by vertical distance is the same in

both graphs.

i ard
/!

simple root double root
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Any root finding method to find a multiple root a that uses evaluation of f(x) is
doomed to having a large interval of uncertainty as to the location of the root. If
high accuracy is desired, then the only satisfactory solution is to reformulate the
problem as a new problem F(x) = 0 in which a is a simple root of F . Then use a

standard root finding method to calculate a.

It is important that the evaluation of F(x) not involve f(x) directly, as that is the

source of the noise and the uncertainly.

In general, if we know the root a has multiplicity m > 1, then replace the problem

by that of solving
fm™(x) =0

since a is a simple root of this equation.
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Example
Consider finding the roots of

f(x) = 2.7951-8.954 x + 10.56 x* - 5.4 x*> +x* =0

This has one root to the right of 1. From an examination of the rate of linear
convergence of Newton’s method applied to this function, one can guess with high

probability that the multiplicity is m = 3. Then form exactly the second derivative

F(x)=f"(x)=21.12-324x +12x2 =0

Applying Newton’s method to this with a guess of x = 1 will lead to rapid

convergence to a = 1.1.
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Stability

Consider the polynomial

f(x) = x” x6 + 322 x> - 1960 x* + 6769 x° - 3132 x* + 13068 x - 5040 = 0

This has the exactroots {1, 2,3,4,5,6,7 }.

Now consider the perturbed polynomial

F(x) = x"(- 28.002x® + 322 x° - 1960 x* + 6769 x° - 3132 x* + 13068 x - 5040 = 0

This is a relatively small change in one coefficient, of relative error 7.14 10-°.

What are the roots of F(x) = 07?
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]I%(())otzoc;‘ Root of F(x) =0 Error
1.0 1.0000028 -2.80E-06
2.0 1.9989382 1.10E-03
3.0 3.0331253 -0.033
4.0 3.8195692 0.18
5.0 5.4586758 + 0.5412578 i -0.46 - 0.54 i
6.0 - 5.4586758 + 0.540122578 i | -0.46 + 0.54 i
7.0 7.2330128 -0.233
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Why have some of the roots departed so radically from the original values? This

phenomena goes under a variety of names. We sometimes say this is an example

of an unstable or ill-conditioned root finding problem.

These words are often used in a casual manner, but they also have a very precise

meaning in many areas of numerical analysis (and more generally, in all of

mathematics).
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Example

2 _
Find the roots of the equation f(X) = X" -2x+1=0

0,8
0,6
0,4
0,2
-5,55111512312578E-17

-0,2
%% o5 1 15 2
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Newton-Raphson on f(x)
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1.1000000
1.0500000
1.0250000
1.0125000
1.0062500
1.0031250
1.0015625
1.0007812
1.0003906
1.0001953
1.0000977

f(x )
0.01
0.0025
0.000625
0.00015625
3.9062E-05
9.7656E-06
2.4414E-06
6.1035E-07
1.5259E-07
3.8147E-08
9.5367E-09

fi(x)
0.2
0.1
0.05
0.025
0.0125
0.00625
0.003125
0.0015625
0.00078125
0.00039063
0.00019531
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