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The one dimensional forms of some constitutive laws commonly used

: Physical : Proportional
Law Equation ys Gradient Flux PO
Area constat
Fourier's dl : Thermal
=k
law e Heat conduction | Temperature Heat conductivity
Fick's e . . -
J=—D— Mass diffusion Concentration Mass Diffusivity
law dx
D'Arcy’ __pdh Flow through Hydraulic
law 1 dx porous media Head Flow conductivity
Ohm's J=-a ar Current flow Voltage Current Electnggl
law dx conductivity
Newton's -
Dynamic
VisSCcosity r= —,uﬂ Fluids Velocity Shear mn ,
law dx Stress Viscosity
Hooka's a=E = Elastici Deformation Stress Young's
law L ty 1 modulus
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Position (Displacement)

%:;Ef(x) Velocity

d’y _ ":f"(:r) Acceleration
dx’

%: Py = f'"(x) Jerk

Snap (Jounce)

Crackle (Flounce)

Pop (Pounce)
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Numerical Differentiation

Given a complicated f(x) or a set of tabulated values, x’s and corresponding
f(x,)'s:

Question: For a given x, in the table or not in the table

Answer: Replace f(x), or the tabulated data, with a simple function g(x).

Then, operate on g(x) instead

E dg d*f dzg
d x d x

fx) =gk
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What is this simple fuction, g(x)?

Truncated Taylor series

g(x) = (%) + (X = Xo) (%) + ...
passes throught x, only

Least Squares

Data should have random statistical errors

Newton-Gregory
Polynomials

Forward, Backward, Central ...
Divided difference table

Cubic Splines

g(X) = a, (X —x)° + b, (x —x)* + ¢, (x—x) +d,
passes through all the points with equal first
and second derivatives at the junctions

Something else

Ratio of polynomials (Padé approximation), sine and
cosine functions (Fourier series), Hermite,
Chebyshey, others
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X - X ]
O where h isconstant

Newton-Gregory forward polynomial S=

s(s-1)
|

f(s) = P(s)=1, +s Af, +

A2 4 s(s-1)(s-2)
0 31

NF + ..

dP,(x) _ 1
dx h

1

fi(s) = [Af + — (2s-1) A%, otz (....) A + }

If x =X, T(X,)=7

12

Use one term: f'(X,)

Use two terms:  f'(x)

112
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f! (x0)~ (f f)) E'(xo) = 7h f"(£) One-term forward
f'(x,)= lh (f,-f,) E'(Xo)=% (&) One-term central
f'(xo);ﬁ(- f,+4f -3f,) B (XO)_ﬁ £ Two-term forward
f'(xo);ﬁ(- fr+8f -8F | +f ) E'(XO)=% £fG))  Two-term central
f'(xg) = lh (2f;—9f, +18f; —11f,) O(h) Three-term forward

Note that, using central differences, we get better accuracy with two-terms than
we do with four terms using forward differences.
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" ~ 1
P'o) = 4 (626 +1) E'(x,) = b £7(&)
" 1 _h2
£'(x,) = 5 (fi-2f, +1,) E'(x) = —- ()
h 12
f'(x,) = % (-f, + 4f, -5 +21) O(h?)
f'(x,) = 121h2 (-f, + 166, -30f, + 16f -f.,) O(h*)
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Two-term forward

Two-term central

Three-term forward

Three-term central
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Error estimates for X-X, :
. S = where h 1s constant
Newton-Gregory forward polynomial
_ - f"(g) f"(g)
f(x) =P,(x) + [ [ (x-x,) E(x) = f(x) - P.(x) = H(x X;)

0 (n+1)|

(n+1)!

n (n+1)
E'(x) = f'(x) - P.(x) = dix@_o[(x'xi) f(n+§§?)

_d(y ") , d (") ]
) d—x@}“'xi)] (1) dx[(n+1)!J [ (x-x,)

' d n (n+1) (n+2) n
09 = _(H R j (n+§§|) (n+g)7!) iy (x-x)
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vy = 9 (17 (&) | f"(n)
E(X)_d_x(,-_o (X'Xi)J (n+1)! T (n+2)! g(x'xi)

If x = X;, one of the tabulated values, the second term becomes zero,

and the first term is reduced to one product of (x; — x;)’s:

E'(Xj) _ ‘.Ln“(X. ] Xi) f(n+1)(é’:)

For example, for the one-term forward formula, when X; = X, is

E'(X,) = (X, - X;) (5) Dt
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Difference Table for f(x) = e

X f (x) Af A2 f A3 f A4 f
1

- 0.632120559

1 0.367879441 0.399576401
- 0.232544158 - 0.252580458

2 0.135335283) 0.146995943 0.1596613
- 0.085548215 -0.092919158

3 0.049787068 0.054076785 0.05873611
-0.031471429 -0.034183048

4 0.018315639 0.019893738 0.021607807
-0.011577692 - 0.012575241

5 0.006737947 0.007318497
- 0.004259195

6 0.002478752
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1l ::g
P2
ST

Example: Using Newton-Gregory forward interpolating polynomial, calculate
f'(x,) at x, = 2.0 for the function given in the difference table and

estimate the error.

Exact solution: f(2)=-e =-0.1353353

N-G Forward 1 term 2 terms 3 terms 4 terms
Polynomial
P’(2) - 0.085 -0.112 -0.123 -0.127
True % Error 37 % 17 % 9 % 6 %
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Error estimation

2 2
One-term forward: E'(xo) = - D ~ - D A 2fo __A fo
2 2| h 2 h
Eee(2) = - ‘ =. 2094 _ 4027

2h 2

True error:  E, . (2)=f(2)-P(2)=-0.135 - (- 0.085) = - 0.05

Note that, with our definition of differences:

f7(e) = A", (hij f7(g) = D, (n)
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a) Fit a fourth-degree polynomial, P,(x), in Lagrange form, passing through all
the given data points;

b) Interpolate y(x) at x = 0.5 and estimate the error;

c) Find the first derivative y’(x) at x = 1 and estimate the error;

d) Compare answers in (b) and (c) with those of the previous example where a

set of cubic splines is fitted to the same data points;

Prof. Dr. Faruk Aring Fall 2021
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Solution: (a) Fourth-degree polynomial in Lagrange form:

P, (x) = (X-X4) (X-X5) (X-X3) (X-X4)

(X-Xg) (X-X5) (X-X3) (X-X4) (x,) +
(Xo-X4) (Xg=X3) (X=X3) (Xo-X4) 1

(X4-Xg) (X4=X5) (X4=X3) (X4-X4)

y(Xq) +

(X-Xp) (X-X;) (X-X5) (X-X4)
(X3-Xg) (X3-X4) (X3-X7) (X3-X4)

(X-Xg) (X-X1) (X-X3) (X-X4)
(X5-Xg) (X5-Xq) (X5-X3) (X5-Xy4)

y(Xy) + y(X3) +

(X-Xg) (X-X4) (X-X5) (X-X3)
(X4-Xg) (X4-X4) (X4-X5) (X4-X3)

Y(X4)

P,(x) = 0.16666667 (x+1) (x) (x-1) (x-2) + 0.16666667 (x+2) (x) (x-1) (x-2) +
0.5 (x+2) (x+1) (x-1) (x-2) - 0.16666667 (x+2) (x+1) (x) (x-2) +

0.33333333 (x+2) (x+1) (x) (x-1)
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This is the fourth-degree polynomial passing through all the given data points.

The plot is given below.

8.0 -

6.0

40 =

2.0 o

-2.0 -1.0 0.0 1.0 2.0

Compare this with the plot of the cubic splines.
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Plots of the data and cubic splines

8.0 o

6.0

-2.0 -1.0 0.0 1.0 20
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The divided difference table for the given data is:

X; Yi Dy; D%y, D%y, D%,
-2.00 4.00
-5.00
-1.00 -1.00 4.00
3.00 -2.00
0.00 2.00 -2.00 1.00
-1.00 2.00
1.00 1.00 4.00
7.00
2.00 8.00
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Note that the same fourth-degree interpolating polynomial can be found using
the divided difference table and the formula

(X) =f(x;) + (x-x)Df +(X-X)(X-Xy,q) szi + .+ (X-X) (X - Xipq) oon (X - Xy ) D

P,(X) = 4-5(x+2)+4 (x+2)(x+1)D4 -2 (x+2) (x+1)x+(x+2)(x+1)x(x-1)

The error estimator for the Newton-Gregory interpolating polynomial is

n (n+1)
E(xX) = f(x)-Pyx) = [[x-x) &)

0 (n + 1)!

The error estimator for the first derivative at a tabulated data point x; is:

. \ , n (n+1)
E(x;) = f(x;)-Pyx;) = J](x;-x) f™(2)

0 (n + 1)!
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Lagrange form:

P,(0.5) = 0.16666667 (0.5 + 1) (0.5) (0.5 - 1) (0.5 - 2) +
0.16666667 (0.5 + 2) (0.5) (0.5 - 1) (0.5 - 2) +
0.5 (0.5+2) (0.5+ 1) (0.5-1)(0.5-2) -
0.16666667 (0.5 + 2) (0.5 + 1) (0.5) (0.5 - 2) +
0.33333333 (0.5 + 2) (0.5 + 1) (0.5) (0.5 - 1)

P,(0.5) = 1.812500

Using divided differences:

P,(x) = f(Xg) + (X-Xo) Dfy + (X-Xg) (X-X%;) D?fy + (X -Xg) (X-Xq) (X - X,) D3,

+ (X - Xg) (X - Xq) (X - X,) (X - X5) D,
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Py(x) = 4.0-5.0(x-Xxq)+4.0 (x-Xp) (X-Xq)-2.0(X-Xq) (X-Xq) (X-X5)
+ (X -Xp) (X-Xq) (X-X5) (X-X3)

P,(0.5) = 4.0-5.0(0.5+2) + 4.0 (0.5+2) (x +1)-2.0 (x +2) (x + 1) (x)
+(0.5+2)(0.5+1)(0.5)(0.5-1)

P,(0.5) =1.812500
The same answer is obtained because they are the same polynomial.

The cubic spline answer was 1.392857.

4
Error Calculation: E (x) = f(x) - P,(x H (5)(5)
i=0 '
f®)(&)
5!

= (X=Xp) (X-X%q) (X=X;) (X=X3) (X-X4)
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5
The fifth derivative is to be replaced by the fifth divided difference: f(5)('98 ) ~ D°f

E (X) =~ (X~ Xg) (X~ X;) (X~ Xp) (X - X3) (X - X4) Df
But, the fifth divided difference does not exist. From the trend in the divided

difference table, assume that D°f = 0.5. Then:

E (0.5) ~(0.5+2)(0.5+ 1) (0.5) (0.5 - 1) (0.5 - 2) (0.5) = 0.703125

The error estimate is almost 40 %. It was about 20% with cubic splines.

(€) One may use either the polynomial in Lagrange form or the polynomial
obtained from the divided difference table. It seems that it is easier to take

the first derivative of the later polynomial. Let’s do that:

Prof. Dr. Faruk Aring Fall 2021
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P,(x) = 4.0-5.0 (x-Xy)+4.0(x-Xgy) (x-X{)-2.0(x-Xgy) (X-Xq)(X-X5)

+ (X - Xp) (X -Xq) (X-X5) (X-X3)

Py(x) = -5.0 +4.0 [(x-Xq) + (X - X{)]
- 2.0 [(x - X1) (X %;) + (X - Xg) (X = Xp) + (X - Xg) (X - Xy)]

+ (X -Xq) (X-X5) (X-X3) + (X=-Xq) (X=X5) (X-X;3)
+ (X - Xg) (X=Xq) (X=X3)+ (X=-Xg) (X-Xq) (X-X,)
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