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5. Transient Heat Conduction

One-dimensional, transient, differential equation

T Initially r of heat conduction for a slab in Cartesian
h r=T, h coordinates with constant k and no heat
generation is:
’ 0L > PT(xt) 1 dT(xt) K
x> a ot - D E,

i The exact (analytical) solution is beyond our

scope. Numerical solutions for simple cases will

be given later.
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5.1 Transient Temperature Charts — Heisler Charts

The temperature distribution for one-dimensional transient heat conduction in simple
geometries such as a slab, cylinder and sphere have been calculated and are

available in the form of transient temperature charts, called Heisler Charts.

The Heisler Charts are a collection of two charts per contained geometry developed
in 1947 by M. P. Heisler and expanded in 1961 by H. Grober with a triple chart per
geometry, a plane wall (slab), cylinder, and sphere. The temperature distribution is

plotted as a function of time and position.

Prof. Dr. Faruk Aring Spring 2013
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The three charts associated with each geometry, slab, cylinder, and sphere, are:

* The temperature,T,, at the center of the geometry at a given time t.

* The temperature at other locations at the same time in terms of T,,.

* The total amount of heat transfer up to the time t.

The Heisler Charts can only be used when:

* The body is initially at a uniform temperature;

» The temperature of the medium surrounding the body is constant and uniform;

* The convection heat transfer coefficient is constant and uniform; and

» There is no heat generation in the body.

Prof. Dr. Faruk Aring Spring 2013
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5.1.1 Heisler Charts for a Slab with Constant k

l Differential Equation:
Initzall 2
- T-Tr L, g T();’t) -1 Y in -L < x <L and
i el i 0 X a Ot
‘ t>0
0 - IC: T(x0)=T, in-L<x<L and t=0
‘ L x
: ] (1) ﬂ =0
‘ OXly-0.t>0
; BC’s: - 5T
| 2) -k <~ =h (T(LY)-T,)
| OXly_L t>0

Prof. Dr. Faruk Aring Spring 2013
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In order to use the charts, we need to define a new non-dimensional temperature
B(x,t) as

e“wznmyy
T -T,
0%0(x,t) o B(x,t)

= 1 - in-L<x<L and t>0
X (04

Differential Equation:

Initial Condition: 06 =1 in -L <x <L and t=0

(1) @=O at x=0,t>0
0 X
Boundary Conditions: B
(2) k8—e+he=0 at x=L,t>0
— 0 X

Prof. Dr. Faruk Aring Spring 2013
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Define non-dimensional variables:

Define non-dimensional parameters:

Differential Equation:

X T(x,t)-T
X=— B(x,t) = ©

L Rl

T = aL—Zt =Fo Fourier number

% = Bi Biot number

0%0(X,7) _ 0 6(X,7)

n 0<X<1 and >0

0 X*
Initial Condition: 0(X,0) = 1
00
Boundary Conditions: X
X=0,7>0

Prof. Dr. Faruk Aring
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in 0 <X <1 and =0

00

=-Bi 6(1,7)
a>(X=1,2'>0

=0 and
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Remember the definitions of Biot number and Fourier number:

LC
Biot number Bi= hL. - KA _ R cond
k i RCOI‘]V
h
Volume, V

Characteristic Length L_ =
< °  Heat transfer surface area, A

. at Rate of conduction
Fourier number 7=Fo= =

L2 Rate of storage

c

Prof. Dr. Faruk Aring
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Exact Solution (for the slab — using a method called separation of variables)

6(X,7) = [A cos(AX) + B sin(AX)] e t" in 0 <X<1 and 7>0

Apply Boundary Conditions and Initial Condition

oX,7) =Y Asin(d)  cosh X)le™  in0<X<1 and £>0
2 A, +sin(24,)

n=1

A.’s (eigenvalues) are the roots of the equation A_ tan(A ) = Bi

(characteristic equation or eigenfunction )

One-term approximation for Fo > 0.2 6(X,7) = A, cos(A,X) e A

Prof. Dr. Faruk Aring Spring 2013
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Example 1
. L=30cm i Initially !
T=T.
k h _ h i h

- N b k =0.865 W/m.K
3 i R T, =500 °C
= a=1.310°m2s ; I

s T.=50°C |

| > X
0 L h =28.4 W/m2.K

Both Figures represent the same problem due to symmetry.

Find the temperature at the insulated surface at x = 0 and time t = 20 hours.

Prof. Dr. Faruk Aring Spring 2013
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at _ (1.310°)(20)(3600) _ 1
2 (0.3)° -
k. 0.865

hL  (28.385)(0.3)

.0

—_

—

Use the first chart
To-T, _ 0.18

T, =(0.18) (T, - T,) + T, =(0.18) (500 - 50) + 50

=131 °C

Prof. Dr. Faruk Aring
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The temperature at a
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Heat Transfer:

The maximum amount of heat that a body can gain (or lose if T, = T_) occurs

when the temperature of the body changes from the initial temperature T, to the

ambient temperature
Quax =mc, (T, -T,)=pVc, (T, -T,) inJoules

max

The amount of heat (thermal energy) transfer, E , at a finite time t is can be

expressed as

Q:ﬁc; dt=j;(-kA 2—1) dt

The third Heisler chart gives Q/Q, .. It is given as Q / Q, in the third chart.

max*

Prof. Dr. Faruk Aring Spring 2013
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Graphical results for the energy transferred from a plane wall over the time interval

t are presented in third chart given below.
1.0
0.9
0.8
0.7
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5.1.2 Heisler Charts for an Infinite Cylinder with Constant k

Prof. Dr. Faruk Aring

Differential Equation:

t>0

IC: ©6=1 in0<r<r, and t=0

B 090

Ji(r@j=l@ in 0 <r<r and
a

(1) —=0 atr=0,t>0
or
BC's:
(2) kg—e+h=0 atr=r,,t>0
r

Spring 2013



)) Bilkent University

ME - 212 THERMO-FLUIDS ENGINEERING I

0.a7
0.05
0.04
0.03

0.01

0.007

0.005
0.004
0.003

0.002

0.001

T
100 The solution is givenin &
San the chart as 6, vs
Fo = a t/L? with 1/Bi as
the parameter.
1.0 Smmm-
0.7 [— —
A e SN
0.4
0.3
= T Bi™! = kihr,

o
18
it 100
25
i 14 90
16
B0
bR 12
1z io e,
1.0 :
08 ] T
0.6 7
0.5 ! 50
0.4 €
0.3 z as
02
-
u'\‘t\ ol A5 30| [3s5] | a0
: 2l NTIN
1 .I'. Al \
0 1 2 3 4 6 B 1012141681820222426 2830405060 708090100 115 130 150200 300

(octfrd) = Fo




Bilkent University ME - 212 THERMO-FLUIDS ENGINEERING I

0.2

The temperature at a
0.8 }0.4 position r/r, is found

using the second chart

0.6 rir, given here.
g | 0.6

03108

0.2
0.9

0.1

1.0
0
001002 00501 0.2 0510 22 5 10 20 50 100

(kihr,) = Bi™!
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Graphical results for the energy transferred from a infinite cylinder over the time

interval t are presented in third chart given below.
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Prof. Dr. Faruk Aring

h=2.5cm
k=215 W/m.K
T,=200 °C

a=18.4 10° m?/s
p = 2700 kg/m3

c = 0.9 kd/kg.K
T.=50°C

h =525 W/m2.K

Calculate

(a) Temperature atr = 1.2 cm

(b) Heat loss per unit pipe
length

after 1 minute exposure to

the environment

Spring 2013
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O‘Zt _ (84 10_5)260) = 8.064 Use the first chart
5 (0.025)
TO p Too -
K _ 215 _ —= =038
hr, (525)(0.025)

T, =(0.38) (T, -T,) + T, =(0.38) (200 - 70) + 70 = 119.4 °C

K 4638 Use the scond chart
hr,

r_ 1.2 -1 _p.08
=212 =048 T -T

I .5 "

T =(0.98) (TO - TOO) + T _=(0.98) (1 19.4 - 70) +70=118.4 °C

Prof. Dr. Faruk Aring Spring 2013
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h* at _ (525) (8.4 10°) (60)

2 > = 0.03 Use the third chart
k (215)
. Q
— =0.65
hr, N (525) (0.025) - 0.061 Q,
k 215

QO =IOCV(-I-| -Too)

2
% =pc” rLO L (T -T.) = (2700) (900) = (0.025)? (200 - 70) = 6.203 10° J/m
% % (0.65) = 4.032 J/m

Prof. Dr. Faruk Aring Spring 2013
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5.1.2 Heisler Charts for a sphere with Constant k

Prof. Dr. Faruk Aring

Differential Equation:

19 (2081208 in 0 <r<r, and
> or or) a ot
t>0
6=1 inO0O<r<r, and t=0
1 @) 99 _o atr=0t>0
r
BC’s:
(2) kg—e+h=0 at r=r, t>0
r

Spring 2013
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The solution is given in
the chart as 6, vs

Fo = a t/L? with 1/Bi as
the parameter.

=g
1 Bi~ = kihr,
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Example 3
r,=10cm
I, K = 50 W/m.K How long does it take for the
h T =250 °C center temperature, T, to
o ¢ = 0.9 k/kg.K reachilS e
T.=10°C
h =280 W/m2.K

Prof. Dr. Faruk Aring Spring 2013
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i

o Gt

T, -T 150 - 10
= = (0.5833 '
T-T 250 - 10 Use the first chart
B at
— = 0.5
L _ 0.865 ~ 01 r02
hL (28.385) (0.3) —
2 0.01

= 357.14 s =5.95 min

.
t=(0.5) > =(0.5
( )a ( )1.410'5

Prof. Dr. Faruk Aring Spring 2013
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The temperature at a

position r/r, is found

using the second chart

Hr,

given here.

0
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Graphical results for the energy transferred from a sphere over the time interval t

are presented in third chart given below.
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One-term approximation for Heisler charts

It is difficult to read the upper left hand corner of Heissler charts. Approximate
solutions can be obtained with one-term approximations of the exact solutions
within 2 % accuracy. Define A tan(A;) =Bi | then:

O(X,t)gp = [T(_:_(’t)_;_Tf] = C, exp( - A7 Fo) cos (%} , Fo>0.2
i T f slab
(r t)lnfcyl - (Tgr'.,t_) :rTfj = C1 exp( ﬂ“] FO [ j ) Fo>0.2
i f Jinf cyl
v
- I
O(rsphere = (T(Tr’t_)TTfj =C, exp(- Af Fo) ——>~+ , Fo0>02
i f sphere e
fo

Prof. Dr. Faruk Aring Spring 2013
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Total heat transfer can be obtained by integration over volume:

C)max - m Cp (Tf _T|)

& stab /1] See Tables 11-2 and 11-3

sphere

Prof. Dr. Faruk Aring Spring 2013
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TABLE 11-2 Constants used in the one-term approximation for one-dimensional
transient conduction

Infinite plane wall with

thickness 2L Infinite cylinder Sphere
(L ehar= L) (L char = ro) VL char=1ra)

Bi= Aq [+ Xy Gy Aq &
AL [ K {rad) {rad| (rad)

0.1 0.0998 10017 0.1412 1.0025 0.1730 1.0030
0.02 0.1410 1.0033 0.1395 1.0080 0.2445 1.0060
0.03 01732 1.0049 0.2439 1.0075 0.2982 1.0080
0.04 0.1987 1.0066 0.2814 1.0098 0.3460 1.0120
0.05 0.2217 1.0082 0.3142 1.0124 0.3852 1.0149
0.06 0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.07 0.2615 1.0114 0.3708 1.0173 0.4550 1.0208
0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239
0.09 0.2958 1.0145 0.4195 1.0222 0.5150 1.0268
0.10 0.31M 1.M60 0.4417 1.02486 0.6423 1.0298
0.15 0.3779 1.0237 0.5376 1.0365 0.6608 1.0445
0.20 0.4328 1.031 0.6170 1.0483 0.7593 1.0592
0.25 0.4801 1.0382 0.6856 1.0598 0.8448 1.0737
0.3 0.6218 1.0450 0.7465 10712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0832 1.0528 1.164
0.5 0.6533 1.0701 0.9408 1.1143 1.16566 1.1441
0.6 0.7051 1.0814 1.0185 1.1346 1.2644 11713
0.7 0.7506 1.0919 1.0873 1.1539 1.3525 11978
0.8 0.7910 11018 1.1490 11725 1.4320 1.2236
0.9 0.8274 1.1107 1.2048 11202 1.6044 1.2488
1.0 0.8603 1.1191 1.2558 1.2071 16708 1.2732
2.0 1.0769 1.1785 1.5985 1.3384 2.0288 1.4793
3.0 11926 1.2102 1.7887 1.4191 2.2889 1.6227
4.0 1.2646 1.2287 1.8081 1.4698 2.4556 1720
5.0 1.3138 1.2402 1.9898 1.5029 2.5704 1.7870
6.0 1.3496 1.2479 2.0490 1.6263 2.6537 1.8338
70 1.3766 1.2632 2.0937 1.54M 2.7165 1.8674
8.0 13978 1.2570 2.1286 1.5526 2.7654 1.8921
9.0 1.4148 1.2698 2.1566 1.5611 2.8044 1.9106
10.0 14289 1.2620 2.17856 1.5677 2.8363 19249
20.0 1.4961 1.2629 2.2881 1.6818 2.9857 1.9781
30.0 1.5202 1.2717 23261 15973 3.0372 1.9898
40.0 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942
50.0 1.5400 1.2727 23572 1.6002 3.0788 1.9962
100.0 1.5552 1.2731 2.3809 1.6016 3.1102 1.9930
o0 16707 1.2733 2.4050 1.6018 3.1415 2.0000

Prof. Dr. Faruk Aring Spring 2013
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TABLE 11-32 Bessel functions of the first kind

Z JolZ) hi(2)
0.0 1.0000 0.0000
0.1 0.9975 0.0459
0.2 0.9900 0.0955
0.3 0.9776 0.1483
0.4 0.9604 0.1960
0.5 0.9385 0.2423
0.6 0.9120 0.2867
0.7 0.8812 0.3290
0.8 0.8463 0.3688
0.9 0.8076 0.4059
1.0 0.76562 0.4400
1.1 0.7196 0.4709
1.2 ¢.e7TMNM 0.4983
1.3 0.6201 0.6220
1.4 0.5669 0.5419
1.5 0.5118 0.6579
1.6 0.4554 0.66949
1.7 0.3980 0.5778
1.8 0.3400 0.6815
1.5 0.2818 0.6812
2.0 0.2239 0.5767
2.1 0.1666 0.5683
2.2 0.1104 0.65560
2.3 0.0655 0.5395
2.4 0.0025 0.5202
2.5 =0.0484 0.48971
2.8 —0.0968 0.4708
2.7 =0,1424 0.4416
28 —0.1850 0.4097
Prof. Dr. Faruk Aring 2.3 ~0.2243 0.3754 Spring 2013
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5.2 Lumped-capacity Systems

In transient (time dependent) heat conduction, temperature varies with location and
time. Sometimes, the variation with location can be ignored, and the entire solid is

assumed to be at a uniform temperature at any given time.

The lumped-capacity system analysis is valid when Biot number is less than 0.1.

. f i Lc/kAs Rcond h Lc
SOLID BODY T Bi = n y <0.1
1/hAs Rconv k
m = mass
V = volume - Volume,V
p = density L.

%= ininl exmpraine Heat transfer surface area, A,

Q=hA]|T. - T(D]

Prof. Dr. Faruk Aring Spring 2013
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5.2.1 One Lumped-capacity System with Convection Boundaries

- First Law: % =Q
Cold fluid — ."Hm Sole mc ar) __ h A (T(t )
o dt

.fT dT  hA ftdt
r T-T¢  Mc, )

T T, _
T,—T; (

-T(t) Tf
Substitute m=pV and L, =V/A T.-T,

T = Time Constant
Prof. Dr. Faruk Aring Spring 2013
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)) Bilkent University
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(a) Cooling

Y

(b) Heating
Prof. Dr. Faruk Aring

Change of temperature of a

lumped system with time

pCpL.
h

.Time Constant =t =

Note that, after about 5 time
constants, the temperature of
the lumped system reaches

almost the steady-state value

Spring 2013
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. . daTe®) . Ah _ . N _
Governing equation: 3 YR, (TH-T,)=0 , IC: fort=0 T(0)=T,
h A h A h « .
e O = (TH@)-T and =—3 =35 = _—— time constant
Define: O(t) = (T(t)-T,) T pcV  me, kL
%we(t)w . IC: fort=0 6(0)=6,=T -T,
h A h «a
o) _ T(t)-T, “ove, | kL ot _BiFo
A . — = e p =e s =e = e
Solution: ) T-T
. h . . . Ry
Bi = = Biot Number Ratio of resistances, —=¢

conv

ot :
Fo = 1z = Fourier Number Ratio of heat conducted to heat stored

S

Prof. Dr. Faruk Aring Spring 2013
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o) _ TO-T, _

0, T -T

I I 00

Prof. Dr. Faruk Aring

—e KL = o 7t = g BiFo
= This equation enables us to determine the
temperature T(t) of a body at time t or
alternatively, the time t required for the

temperature to reach a specified value, T{(i).
* The temperature of a body approaches the

ambient temperature, T, or T, exponentially.

" The temperature of the body changes rapidly

at the beginning, but rather slowly later on.

= A large value of 1 indicates that the body
approaches the ambient temperature in a

short time.
Spring 2013
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The rate of convection heat transfer between the body and the ambient can be

determined from Newton’s law of cooling
Qt)=hA, [T,-T)] =hA, (T, -T)e®™™ inWatts

The total heat transfer between the body and the ambient over the time interval, 0 to

t, is simply the change in the energy content of the body:

t
Q=A,h [(TMH)-T,)dt=mc, (T, -T)[1-e®%] inJoules
0

The maximum heat transfer between the body and its surroundings (when the body

temperature reaches T.):

Q.. =mc, (T, -T,) inJoules

max /

Prof. Dr. Faruk Aring Spring 2013
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Example 4

A large, pure Aluminum plate, thickness L = 1 inch (2.5 cm), at a uniform

temperature T, = 93.3 °C is suddenly immersed in a well-stirred fluid at
temperature T, = 4.4 °C. The convective heat transfer coefficient is h = 96.5
Wimz2.K.

Determine the time required for the center of the plate to reach T, = 26.7 °C.
k=20.6 Wm.K, p=2735 kg/m?, c, = 837.3 J/kg.K

Check the Biot number first, and use lumped-capacity system analysis if

appropriate, i.e., if Bi < 0.1

iz NL. _h Volume _ h AL _ 965 0.0254 =591o-3
k k HTArea ~ k 2A 2076 2 |

Prof. Dr. Faruk Aring Spring 2013
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h A h a
T{t)-T, = g PV =e'k|_st — g 7t = g BiFo
TI - vl
- hA _ _h 08 =3.3210°

“pVc, pc,L,  (2735)(837.3) (0-0254/)

T(t) - -I-OO — 267 = 44 - e_(3_32 10'3)t — 025

Prof. Dr. Faruk Aring

Time
constant
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5.2.2 One Lumped-capacity System with Convection and Prescribed Heat

Flux Boundaries

q Assumptions:
= g Slab I » Surface areas on both sides of the slab are
() :
—
T equal
— m Ri
I Bi<0.1
- " = Constant properties

First Law: Aq+Ah(Tw—T(t))=pcpAL%:t) , t>0

Initial Condition: T(0) =T,

Prof. Dr. Faruk Aring Spring 2013
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5.2.2 Two Lumped-capacity System with Convection Boundaries

g ¥

1

A; by

1 Cpi‘. Ti(t)

N P

T.(t)

C? ~pc? C

Prof. Dr. Faruk Aring
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- t)=0 et +(1-e ")

Container, ¢
Fluid inside, i

Fluid outside, o

Temperatures, T, and T, are

functions of time, only

Spring 2013
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Fluid inside is well stirred. Fluid outside has a constant temperature,T...
Heat transfer areas are A and A,
Convective heat transfer coefficients are h. and h,.

Find the temperature profiles, T (t) and T (t).

Energy balance equations:

_ dTi(t)
Inner fluid:; A h [Tc(t) 'Ti(t)] = P G v dt
B dT,(t)
For the container: Ai hi [Ti(t) B Tc(t)] y Ao ho [Too B Tc(t)] = P: Cpe Vc dt

Initial conditions: Tt =T,(t)=T, fort=0

Prof. Dr. Faruk Aring Spring 2013
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Define: 6(t)=T(t)-T, 6.1 =T®1-T, 6, =T,-T,

A h m, = A h m, = A, h,
P, \/I Cpi Le Vc Cpc Jors Vc Cpc

m, =

Differential equations become:

% +m, [6(t)-8,(t)] =0 for t>0
dedct(t) +m, [6,()-6,()] +m, 8,(t)=0 for t>0

The lengthy solution will not be given here.

Prof. Dr. Faruk Aring
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5.3 Heat Conduction in
Semi-infinite solids

A semi-infinite solid is an idealized body that
has a single plane surface and extends to

infinity in all directions.

» Assumptions:

Plane
surface

— constant thermo-physical properties

— no internal heat generation

— uniform thermal conditions on its exposed

surface
— initially a uniform temperature T,

throughout.
* In this case, heat transfer occurs only in the direction normal to the surface (the

x direction) > one-dimensional problem.

Prof. Dr. Faruk Aring Spring 2013
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—
"
—
e

—

I | P I I

// =

0.6 / [ e L
\_, erf(n) = j e M du
]

o'T(x.t) _ 1 aT(x.t)
0 X° a Ot

Differential Equation:

-
oo
u¥

Error function erf (n)

Boundary Conditions: ~ 1(0:) = Ts -k / J% .
TX > owot)=T, U.E._/ ]
Initial Condition: ~ T(x,0) =T, 000 05 10 15 20 25 30
U
(T(t)-T,) 2 -2
Solution: = e " du=erf(n)=1-erfc(1-n)
SAREEL

X
where 77 > Jat  Similarity variable

Prof. Dr. Faruk Aring Spring 2013
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See the related equations and graphs in the text book for other boundary

conditions:
» Constant surface temperature
* Constant surface heat flux

= Convection at the surface

For convection at the surface:

TO-T) _ 1~ ertrr) - {exp[hkx . Ma tﬂ [1 _en{n p h\/ﬁﬂ

(Ti - Ts)

Prof. Dr. Faruk Aring Spring 2013
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L
oni

Example 5: Concrete semi-infinite body

Given data:

T.=54°C h=2.6Wm2K

Plane
surface

T.,=10°C X=7cm

t = 30 minutes

Question: T(x)="7?

Prof. Dr. Faruk Aring Spring 2013
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5.4 Multi-dimensional Systems — Product Solutions

T, T,
f h

4y T(r.) gy Heat

transfer

{a) Long cylinder

Ty — i_"'&.

h

Heat
SRy Tir.x.t) — transfer

i 2

(&) Short cylinder (two-dimensional )

Prof. Dr. Faruk Aring

Using a superposition approach called the product
solution, the one-dimensional heat conduction
solutions can also be used to construct solutions for
some two-dimensional (and even three-dimensional)

transient heat conduction problems.

Provided that all surfaces of the solid are subjected
to convection to the same fluid temperature, the
same heat transfer coefficient, h, and the body has

no internal heat generation.
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The solution can be generalized as follows:

The solution for a multidimensional geometry is the product of the solutions of the

one-dimensional geometries whose intersection is the multidimensional body.

For convenience, the one-dimensional solutions are denoted by

(T(tx)-T,)
Plane Wall (slab) (T -T.)

(Tt -T,)
Infinite Cylinder T-T)
Semi-infinite body (T -T.)

Prof. Dr. Faruk Aring

plane wall

inf. cyl.

semi—inf. body
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Example 6: Short Cylinder

T » Height a and radius r,.
" - Plane wall B _
h g PR S - * Initially uniform temperature T.
'
~— * No heat generation
T _, ) « Attime t=0:
4
| — o — convection T,
. A o e T N = e
£ 1 — heat transfer coefficient , h
i Long
onlindir Product solution:
(T(t,r,x) - TOO) 4 (T(t,x) - TOO) . (T(t,r) - TOO)
(Ti ) TOO) short cyl. (T’ ) TOO) plane wall (T’ ) T°°) inf. cyl.

Prof. Dr. Faruk Aring Spring 2013
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Infinite rectangular bar:

Ly L, 4= i

(T(tx)-T,)

_(Tx)-T,)

(T; - T,)

inf. bar

Prof. Dr. Faruk Aring

(T; - T,

plate, L,

L (TEx)-T,)

(T - T,)

plate, L,

Spring 2013
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e;\_____ A
e U

i

Semi-infinite rectangular bar:

L L, <= 1) L, é * L. * /v\

(Ttx)-T,) _ (Ttx)-T,) L (Ttx)-T,) L (Ttx)-T,)
(Ti ) TOO) semi—inf. bar (T’ ) TOO) plate, L, (T’ ) TOO) plate, L, (T’ ) TOO) semi—inf. body

Prof. Dr. Faruk Aring Spring 2013



Bilkent University ME - 212 THERMO-FLUIDS ENGINEERING I

n Dodry;
Ly
i
{ .[:m;l \

\%

et i

éﬁ\ /!14

Rectangular parallelepiped:

/]\ —
L L, L,
1 L, l — 1) L, é * * L,
(Ttx)-T,) _(Ttx)-T,) L (Ttx)-T,) . (Ttx)-T,)
(Ti - Too) ) (Ti - Too) (Ti - Too) (Ti - Too)
rec. pp plate, L, plate, L, plate, L,

Prof. Dr. Faruk Aring Spring 2013
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Semi-infinite slab:

—~— —~—
L
L, - i N /\/\\
(T(t,X) B Too) _ (T(t,X) B Too) * (T(t,X) - Too)
(Ti ) TOO) semi—inf. slab (T’ ) TOO) plate, L, (T’ ) TOO) semi—inf. body

Prof. Dr. Faruk Aring Spring 2013
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Semi-infinite cylinder:

b b
LA - b, */\/\\

(Tt -T,)
(Ti - Too)

(Tt -T,)
(Ti -T )

o0

L (Ttx)-T,)
(Ti B Too)

semi—inf. cyl. inf. cyl. semi—inf. body

Prof. Dr. Faruk Aring Spring 2013
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n Dodry;
Ly
i
{ .[:m;l \

\%

et i

éﬁ\ /!14

Finite (short) cylinder:

(Tt -T,)
(Ti -T )

o0

_ (T -T,)
) (Ti - Too)

L (Ttx)-T,)
(Ti B Too)

finite cyl. inf. cyl. plate, L

Prof. Dr. Faruk Aring Spring 2013
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Q Hot metals are quenched in cold fluids to change the material
T ' properties. Consider a long 7.5 diameter cylinder of 316
L L stainless steel that is taken out of the furnace at 500 C and
JL plunged into a cold bath at 25 C. The convective heat transfer

C% coefficient is 1000 W/m2.K

C

(a) Determine the centerline temperature of the cylinder 90 s after it is quenched
(b) Determine the surface temperature of the cylinder 5 min after it is quenched

(c) Determine the time required for the centerline temperature to reach 50 C.

Prof. Dr. Faruk Aring Spring 2013
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