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3. Steady, One-dimensional Heat Conduction

Steady state: Temperature does not vary with time.

One dimensional: Temperature is a function of one dimension only, such as x.

3.1 Slab with constant properties, such as k

T=T1, T=1; dx

Differential equation d(, dry) . _
9 (k —j +€un =0
S «— °  with heat generation:

dx -

Note that the partial differentials no longer exist

Slab which makes the solution simple.

x=0 x=L The heat generation term can be a constant or a

function of position (space variable) x.
The solution depends on the BC'’s that are used to to find the const. of integration.
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Differential equation

without heat generation:

Fvamnla 1

T‘T T—'T:l
g P ;
H
B 7
x={) x=[

BC's: atx=0 T(0)=T,

at x=L T(L)=T,

Prof. Dr. Faruk Aring

nd I dT _ d?’T _o
dx dx) = e for constant k

Determine T(x) and q for a slab with boundary

surfaces at x = 0 and x = L are kept at uniform

temperatures T, and T, respectively (no heat

generation).

d>’T

—— =0 in 0<x<L ¥(x)=C;x+C,
dx?

=> C2 = T1
T2 'T1
L

Y
_l
—~

X
~

il

=> C1=
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Heat flux; ax

%) Independent of x

- T -T
Heat flow rate: Q=gqA=kA (%) Independent of x

If there is no heat generation, heat flux g and heat flow rate Q are independent of
position (x) (any geometry). Therefore, g and Q can be found by solving the Fourier
equation only, taking q and/or Q constant (not a function of x).

L
Re-solve q=-kd—x => qdx=-kdT => _([qu=.[-dT

the Example

L T2 - . -
qfdx=[-dT => Q=k(T1LT2j > |qg=TT
0 T

kA

Prof. Dr. Faruk Aring Spring 2013




ME - 212 THERMO-FLUIDS ENGINEERING I

\ Temperature profile: T(x) = L I: g x+T,
T

e () Heatflux =k (T1 -sz

T1'T2 T1'T2
L
e Ax —] kA

0fF——x

Heat flow rate: Q=k A

Prof. Dr. Faruk Aring Spring 2013
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Example 2
Determine T(x) and q(x) for a slab with uniform heat generation, e, in W/m?. The
boundary at surface x = 0 is kept at a uniform temperature T, and the boundary at

x = L dissipates heat by convection into an environment at a constant temperature

T with convective heat transfer coefficient h.

dP°T e, ,
Differential equation: 0 + c =0 in 0<x<L

Boundary conditions: 1. T(0)=T, at x=0

2. k£+hT(x)=hToo at x=1L
dx

dT € 4gen

Solution: S
X

e
x + G, i) = - 29(: X2+C1X+C2

Prof. Dr. Faruk Aring Spring 2013



ME - 212 THERMO-FLUIDS ENGINEERING I

L .| : ol Apply Boundary conditions:
| g
From (1): C,=T,
T T(x)
C = (TOO -T1) h s égen L (2k+hL)
TTT : s From (2): “~1 ~ K+hL 2k(k+hL)
- O 11 1
This is a parabolic distribution

A

(T.-T)h , &L (2k+hL)
k+hL 2k (k+hL)

X+ T,

e
T(x)=- =2 x* +
(x) > k {

Prof. Dr. Faruk Aring Spring 2013
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Define a non-dimensional parameter called Biot number: Bi = I

00T = [T T} Xy G U (1+2/Bij§_(§jf
1 1+1/Bi) L 2 k 1+1/Bi) L L

We shall return to the importance of the Biot number later on.

Heat flux: | 9(X) =- dx ~ égen x-C, k Heat flux is a function of x

Prof. Dr. Faruk Aring Spring 2013
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Jean-Baptiste Biot
French Scientist

1774 - 1862
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Note the following: When there is heat generation in the medium, the heat flux

varies with position.

For most practical problems, the amount of heat flow at the boundaries is of

interest.

Examine the cases when Bi -> « and when Bi -> O:
When Bi -> « then h -> « and the boundary condition reduces to T(L) =T.,
When Bi -> 0 then h -> 0 and the boundary condition reduces to dT/dx = 0.

That means that there is no heat flow through that surface at x = 0.

Prof. Dr. Faruk Aring Spring 2013
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Example 3

Consider an infinite plane wall (slab) 2 L thick, in which there is uniform volumetric

)

heat generation rate, q””. The wall surfaces are maintained at T =T, at x = - L and

T =T, at x = + L. For constant thermal conductivity k, steady-state operating

conditions, and defining the origin of the x coordinate from the centerline of the
plane, show that the solution of the general conduction equation for the

temperature distribution (profile) in the wall is

"ny2

q

T(x) = 2 k

[1_ (%)2]+T2;T1 (%)+T1;T2

Prof. Dr. Faruk Aring Spring 2013
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Differential equation

Solid cyclinder

Prof. Dr. Faruk Aring

Hollow cyclinder

I -“!; —] Tx.
,! TR
= e r dr\ dr K
0 4 dT(r)
: Heat flux 97 ~% —
;! b S8 If positive, heat flow is in

the positive r direction

Spring 2013
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For a solid cylinder, the solution of the differential equation requires two boundary

conditionsatr=0and atr =b.

The boundary condition at r = b can be of any kind. For steady state , it cannot be

an insulated surface BC. (Why?)

The boundary condition at the centre (r = 0) Atr=0 daT _ 0
is implicit. It is known as the symmetry dtl" -
or T is finite

condition. (Symmetry of what?):

Example 4
Determine T(r) and q(b) for a solid cyclinder with uniform heat generation, e, in

W/m3. The boundary at surface r = b is kept at a uniform temperature T,.

Prof. Dr. Faruk Aring Spring 2013
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1 d( dT € gen _
Differential equation: ~ —(r —j + = =0 in 0<r<b

ﬁ
Q
=

Boundary conditions: 1. T(b)=T, at r=b

> 9T -9 at r=o0
dr
] d dT égen dT égen 2
. S e r => r— =- r-+C
Solution: dr( drj p ar p :

From (2): C,=0
Apply Boundary conditions: égen ,
From (1) C, =T, + 4K b

Prof. Dr. Faruk Aring Spring 2013
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o
Temperature profile has a parabolic distribution:
e e
T T()=- =% 2+ 20 p2 4 T,
/ 4 k 4k
1, |
T Heat flux at the surface r = b:
T‘ W
i : :

A v ¥ o dT e e b

> r =-k— =-k N genb — gen

q( )r=b dr - [ 2 k ) 2

Prof. Dr. Faruk Aring Spring 2013
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Example 5
Determine T(r) and the radial heat flow rate Q for a length L in a hollow cylinder

with constant rate of heat generation, e, when the boundary at surfaces atr = a

and r = b are kept at uniform temperatures T, and T,, respectively.

T Differential equation:
T, 1 d( dT
- | r
J

roarl ar

e
)+ gke”=0 in a<r<b

Boundary conditions: 1. T(a)=T, at r=a
2. T(b)=T, at r=b

} (al e
=3 Solution:  T(r) =~ —=% 1% + C, In(r) + C,

Prof. Dr. Faruk Aring Spring 2013
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Apply boundary conditions: _
e
e (Tb ) Ta) > (b2 i az)
Tr)=- =2 r2 + 4 In(r) +
4 k (b
In| —
a

égen 2 .2 In(a)
+ b- -a —
( )} In(bj

a

The radial heat flow rate at any position r through the cylinder for a length of H is:

Q(r)=q(r)(Area)=-kz—I(27er)=27zL [8926” r* - C, kJ

Show that if there is no heat generation, the heat flow rate is independent of the

radial position r.

Prof. Dr. Faruk Aring Spring 2013
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3.3 Sphere with constant properties, such as k

b
: 1 d(, dT)  ©€g, _
5 - Differential equation 7 4 (" 5r Y =0
- dT(r)
Heatflux 97"k dr
b
r
a . The considerations for the boundary conditions
0

(such as symmetry at r = 0) is the same as that of

a cylinder.

Prof. Dr. Faruk Aring Spring 2013
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Example 6
Determine T(r) and the total radial heat flow rate Q in a hollow sphere when the

surfaces atr = a and r = b are kept at uniform temperatures T, and T,, respectively.

(No heat generation.)

d({ , dT ~0 i 2 P
Differential equation: 4 |" 5 )~ M @=T*=

Boundary conditions: 1. T(a)=T, at r=a
2. T(b)=T, at r=b

Solution: a(rz Ej =0 => r’ dar =C, => T(r)=- r1 + C,
__C _C
Apply boundary conditions: Ta =- a1 +C, T, =- b1 +C,

Prof. Dr. Faruk Aring Spring 2013
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ab bT, -aT,
Apply boundary conditions: C, = a-b (Ta ) Tb) C, = E _a
1 b a
Temperatute profile: =53 {a Ts (? ] 1J *ol (1 _ ?ﬂ

.. dT
Radial heat flow rate: Q= q(r) (Area) = -k ar (4 zr?)=-47kC,

ab
a-b

Q=4 rk

(Ta - Tb)

Q is independent of position, i.e., it can be found with Fourier equation only, as

before.

Prof. Dr. Faruk Aring Spring 2013
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3.4 The Concept of Thermal Resistance

The total heat flow rate through a solid can be related to thermal resistance if these

assumptions are true:

" One-dimensional, steady-state heat conduction;

Finite regions;

No heat generation;

Constant thermal conductivity; and

Prescribed temperatures at the boundaries.

= AT:. Difference between temperatures at the

If so, then Q= E where boundaries

= R: Thermal resitance in °C /W

Prof. Dr. Faruk Aring Spring 2013
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The thermal resistance is analogous to electrical resistance defined by:

Electric potential difference

Current = . :
Electric resistance

3.4.1 For the Slab

T—T; T—'T‘_’

Slab

= 0 = L

Prof. Dr. Faruk Aring

I_ AV imi Q = A_T
R Similarly: R
: T, -T T, -T
From Example 1 Q=Ak 1—2 = 1L2
Ak
L
R - _—
slab k
T -T
S )
0= R
7o AN+ T,
R
Spring 2013
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Slab with convective boundaries

T 1> T2 Q=A h, (Too,1 - T1) = =l

o1 Ah
\lT ﬁg 1
R 2

L
fy‘ T [\ . A K

oo, 2

k

~N — T2 -Too,2
L Q=Ah, (T,-T,,)= ===

x=0 x=L Ah,
[ T T [ A
—> —MNV——A——A—0 —> Note that it is the same Q.
Q 1 L 1 Q

hy A, KA hoA,

Prof. Dr. Faruk Aring Spring 2013
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Example 7

A furnace wall 200 mm thick is made of a material having thermal conductivity of
1.45 W/m.K. The inner and outer surface are exposed to average temperatures of
3500 °C and 400 °C, respectively. If the gas and air film coefficients are 58 and
11.63 W/m2.K, respectively, find the rate of heat transfer through a wall of 2.5 square

meters. Also, find the temperatures on the two sides of the wall.

A = Ton - Top ) 350 - 40
1 L 1 1 0.2 1
+ + + +
Ah, Ak Ah, (2)(58) (2)(1.45) (2)(11.83)
= 3214 W

(2) (58) (350 - T)) T, =327.84°C

Q=3214W=Ah (T, -T,)
T_,)=(2) (11.63) (T, - 40)

=Ah2 (TZ- 00,

T,=150.5 °C

Prof. Dr. Faruk Aring Spring 2013
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Steady, one-dim. heat conduction
Oven wall Insulation through multi-layered slabs:

.  T,—T T,—T
Qcond= klA . 2 = kZA 2 &
L, L,

Iy—T, T,—T;
L,/k;A L,/k,A

- .
Qcond =

-. Tl_TZ TZ_TS TI_TS

Qeona = Ri, R, R,+R,
. L, L,
RCOnd=R1+R2=k1A+k2A

Prof. Dr. Faruk Aring Spring 2013
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Steady, one-dimensional heat conduction through multi-layered slabs:

A B D AgtAFA=A
. L=
TI T: T &
K A C I{‘ ()]
K C .Q =.T1 - TZ
; cond Rtntal
e 3
L kg4 L Rios = Ry + ——— + R
1 M . 2 total A i+l D
i o R. 'R
9 M [ M
A .
.-':.-I

Prof. Dr. Faruk Aring Spring 2013
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3.4.2 For the Hollow Cylinder

- een
From Example 4 Q=27T|—£92 "Z'C1kj

r
IL I,
T~ € =0 => Q=27xL(-C,K)
_ T, - T, B . 2nlL
I C, = b => Q= b (Ta'Tb)
In| — In| —
a a
h‘__f"\” (bj
In| —
a
RcyI >
27 LK

Prof. Dr. Faruk Aring Spring 2013
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This can be re-arranged to take a similar form as that of a slab:

LC
RCyI n A ylk
cyl
Where: Ly, =b-—a Thickness of the cylinder
Ab - Aa : :
Ay = A0 Logarithmic mean area
In| —&
[AaJ A, =2zblL
A,=2ral

Prof. Dr. Faruk Aring Spring 2013
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T . . . .
T Hollow cylinder with convective boundaries

: T .-T
Q=A1 h1 (Too,1 'T1) 2 %
A1 h1
Q=2rkL | T g =
e e e e In(r2 j In(r2 )
Q h1A In(rz;(’f) h1A Q r1 r1
i) 2n 1M 2 T k |_
;
: T, -T,
Q=A, h, (T,-T,,) = ==
$ A2 h2
T2
0 r|1 2 > Note that it is the same Q.

Prof. Dr. Faruk Aring Spring 2013
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Example 8

A steam pipe of inner diameter 200 mm is covered with 50 mm thick high insulated
material of thermal conductivity k = 0.01 W/m.°C. The inner and outer surface
temperatures maintained at 5000 °C and 1000 °C, respectively. Calculate the total

heat loss per meter length of pipe?

. T, -T -1
200 _ 400 mm g T-T, _ _500-100

T p '”(rzrj B |n(o.1%.1)
1

_ 2004100 _ .. 2 7 (0.01) (1)

=61.98 W

I

Prof. Dr. Faruk Aring Spring 2013
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3.4.3 For the Hollow Sphere

: ab
b From Example 5 Q=4rk o (Ta

0 -
R, = 1 b-a
k 47k ab

. _ sph
This can ve re-arranged: Reon A K

Where: L,,=b—a Thickness of the sphere

Ag = Aa Ab Geometric mean area

A, =4zb> A =4ra’

Prof. Dr. Faruk Aring
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Example 9

A spherical shaped vessel of 1.2 m diameter is 100 mm thick. Find the rate of heat
leakage, if the temperature difference between the inner and outer surface is 200

°C. Thermal conductivity of the material of sphere is 0.3 kd/h.m.°C.

1.2 [ ] ab

b= —==06m Q=47zkb_a (T, -T,)
_12-(2)0.1) _ =4 7 (0.3) {92 06) 540\ = 2262 Kku/h
a - 0.5 m 7 (0.3) 2m (200)

Prof. Dr. Faruk Aring Spring 2013
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3.5 Composite Medium

If heat transfer takes place through a medium composed of several different layers,
connected in parallel or in series, with the same or different thermal conductivities,

the rate of heat flow can be calculated using the thermal resistance concepit.

In addition to the previous assumptions, add the following:

= Perfect thermal contact (no temperature drop at the interfaces of the layers);

= |nterior and exterior surafces of the structures are subjected to convective heat

transfer to fluids at constant mean temepratures T_ , and T, ,, and with convective

heat transfer coefficients h, and h..

Prof. Dr. Faruk Aring Spring 2013
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3.5.1 Slabs Connected in Parallel

Prof. Dr. Faruk Aring Spring 2013
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The heat transfer rate, Q, through an area A of this composite structure is the same

through each layer.

Q=Ah, (T, -T,)=AKk, h-T =AKk, T-Ts =Ah, (T,-T,,)
1 2
In terms of thermal resistances:
Q: TOO’1-T1 = T1-T2 — T2_T3 — T3-T°°’2
1 L1 L2 1
A h1 A k1 A k2 A h2
Q=Too‘|-T1 =T1-T2=T2-T3=T3-T002

Prof. Dr. Faruk Aring Spring 2013
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Define total resistance, R=R, + R, + R; + R,

Q - Too,1 - T1 — T1 2 T2 - T2 - T3 - T3 = Too,2 B Too,1 = Too,2
R1 R2 R3 R4 I:{total
Define Overall Heat Transfer Coefficient, U:

' T,,-T T .-T

Q=AU (Too,1 - Too,z) S 1 ©2 — _»1 0,2
—— Rtotal
AU

1 1
U= =
A Rtotal 1 + L1 + L2 + 1

Prof. Dr. Faruk Aring
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3.5.2 Slabs Connected in Series

B
A D
K 1
T, T
K & C K )]
K LN
L
a{. : ;L'H:I .;,“
5  E T kA
! M\ L M -

Prof. Dr. Faruk Aring

L, =L,
A, =A, +A. = A,
Q - T1 ~ Tz

|Qtotal
1
total = RA i 1 1
+
RB RC

Spring 2013
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Example 10

A composite wall consists of three layers of thicknesses 300 mm, 200 mm and 100
mm with thermal conductivities 1.5, 3.5, and is W/m.K, respectively. The inside
surface is exposed to gases at 1200 °C with convection heat transfer coefficient as
30 W/m2.K. The temperature of air on the other side of the wall is 30 °C with
convective heat transfer coefficient 10 W/m2.K. If the temperature at the outside
surface of the wall is 180 °C, calculate the temperature at other surface of the wall,

the rate of heat transfer, and the overall heat transfer coefficient.

Prof. Dr. Faruk Aring Spring 2013
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. T,-T _
Q = 2 2 Rtotal y Rconv,1 v Rcyl,1 b RcyI,2 M I?cyI,S b Rconv,2
Rtotal
R = 1 R = 1
ot 271 Lh, oz 2xr, Lh,
n| 2 In[re’j Inl T«
§ r I
R = 1 R — 2 R — 3
M2 7Lk, N2 2Lk, N2 r Lk,

The overall heat transfer coefficient, U, can be defined in two ways:

U, = 1 = 1 based on interior surface area
A1 Rtotal 2 7 r1 L Rtotal

U, = L = 1 based on outer surface area
A4 Rtotal 2 7 r4 L Rtotal

Prof. Dr. Faruk Aring Spring 2013
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/
3,

For most engineering problems, the overall heat transfer coefficient, U, is based on

the external (outer) surface area because the outer diameter can be easily

measured.
U2 = 1 — 1
A4 Rtotal 2 T r.4 L Rtotal
U, = 1
1,5 mm o T m(%j i m[uj Al
1 h1 k1 r‘I k2 r2 k3 r3 h2

Prof. Dr. Faruk Aring Spring 2013
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Example 11

A steel tube of 5 cm ID (inner diameter) and 7 cm OD (outer diameter) is covered
with 2.5 cm layer of insulation. The inside surface of the tube receives heat by
convection from a hot gas while the outer surface of the insulation is exposed to the
ambient air. Determine

a) The heat loss to the ambient air per 3 m length of the tube; and

b) The temperature drops across the tube material and the insulation layer.

Data: T,,=300°C h, =284 W/m? K Neglect radiation.

T.,=30°C h, =17 W/m? K

Prof. Dr. Faruk Aring Spring 2013
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~ Too1 - TooZ
: Q= : :
(a) Radial heat flow R,
tota
through the tube:
Rtotal = |Qconvj T Rcyl,1 t I:\)cyI,Z + Rconv,2
1 1 3 .
R_ ., = = =7.4710° “C/W
" 2xrLh, 27z (0.025) (3)(284)
|n(r2 j In(3.5
- r1 - ( 45) =4.1310-4 oC/W

M2 4Lk, 27 (3)(43.26)

m(rs rzj ] IIn((3.5+2.5)3.5)

Rcyl2 = -
2 2xzLk, 2 (3)(0.208)

=1.37510" ‘C/W

conv,2 oy r, L h2 2 (0035 + 0025) (3) (17)

Prof. Dr. Faruk Aring Spring 2013
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i

o Gt

=Reomvt T Ryt T Rz ¥ Regny =0.197 'C/W

T..-T., _ 300-30
R 0.197

=1368 W

total

(b) Temperature drops

R 4 »
ATope = =0 (T, -T,,) = 2519 (300 - 30) = 0.564 C Note the
Rotal ’ ’ 0.197 | |
_ difference in
R -1 temperature
AT, = === (T,,-T,,) = 137948 (300 - 30) =188 °C
Rtotal ’ O 1 97 drop
Spring 2013
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Example 12

A nuclear fuel rod assembly,
consists of an outer cladding
and the inner nuclear material,

as shown in the figure.

(a) Determine the temperature
at the assembly surface (in °C)
(b) Determine the temperature
at the interface between the
inner nuclear material and the

outer cladding (in °C)

Prof. Dr. Faruk Aring

T, = 300°C
=100 Wim- K _+
—|_|___ o o
Pt
x,f’ — Muclaar materia
=7 g"=60,000 Wim?

'1
H )éh?rﬁm";l'

: ”D' "‘/‘k 3.2 Wim- K
."“"H I'I':ITTE'

Y ‘r-,_l..-r”

?—::I_”'_'-"l'li"l"

by —r‘J T”[T']I
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(®)) Bilkent University

3.5.4 Cocentric Spheres

f . .;~‘1'
|II I .rd-l-hﬂ"'r'l ll‘l II
I R R R: R, T, | |
O AWN—AMWM—AWW—0 | | /A ,
Tl T2 T3 % 1“- — -F-r i
% .-"r.
Q = Tl-To — T-T — L-T - Tz'Ts — T3'To
Rtotal R1 R2 R3 R4
R = 1 _ r, -r, _ 1 r, -1,
1 2 3
4 7 r h 4k, &, 47k,

Prof. Dr. Faruk Aring
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For most engineering problems, the overall heat transfer coefficient, U, is based on

the external (outer) surface area because the outer diameter can be easily

measured.
1 1
YT AR T a:°R
o) total T r3 total
U = 1
o 2 2 2

1l'32+r2-r1 LR Yl CO CUR
h1 r.1 k1 r2 r1 k2 r3 r.2 hO

Prof. Dr. Faruk Aring Spring 2013
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Example 13
pEe— A 17 m internal diameter spherical tank made of 2
;;’ - i ']wd T~ MHH . 4 cm thick stainless steel (k = 15 W/m.K) is used to
/ e %;'_J_ﬂ x’*; -~ store iced water at T., =0 °C. the tank is located in
| :'I r*'h:"f " '| a room whose temperature is T, = 22 °C. The walls

0°C '
b of the room are also at 22 °C. The outer surface of

\ // the tank is black and heat transfer between the
outer surface of the tank and the surroundings is by
natural convection and radiation.

The convection heat transfer coefficients at the inner and the outer surfaces of the
tank are h, = 80 W/m2.K and h, = 10 W/m2.K, respectively. Determine the rate of

heat transfer to the iced water in the tank.

Prof. Dr. Faruk Aring Spring 2013
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The thermal resistance network for this

nrohlem ic in the Finlire

Ilu.._ — NN —e A ™
' R, R,

Inner surface area: A, = 1 D2, = 28.3 m? Inner diameter: D, =3 m

Outer surface area: A, = 1 D2, = 29 m? Outer diameter D, = 3.04 m

The radiation heat transfer coefficient is given by: h =¢o(T; + Tj,z) (T, +T.,)

T, is unkown. In order to calculate, h, a trial-and—error procedure is necessary.

Prof. Dr. Faruk Aring Spring 2013
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Assume value for T,, check this assumption later, and repeat the calculations if

necessary using a revised value of T,.

Note that T,, must be between 0 °C and 22 °C, and closer to 0 °C since the heat

transfer coefficient inside the tank is much larger.

Take T, =5°C =278 K. Then

h =co(T; +T2,) (T, +T,,)=(1)(5.67 10°) ((295)° + (278)*) (295 + 278)
= 5.34 W/m2.K

The other thermal resistances are:

R=R_ . =_1 = 1 = 0.000442 °C/W
T h A, (80)(28.3)

r, -r 1.52-1.50 )
eph = 24 = = 0.000047 °C/W
4 rkrr, 4 7 (15) (1.52) (1.50)

Prof. Dr. Faruk Aring Spring 2013
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1 1

R,=R__, = = = 0.00345 ‘C/W
27 h, A, (10)(29)
1 1 o
R = = = 0.00646 ‘C/W
h A, (5.34)(29)

Parallel resistances, R, and R _,, can be replaced by an equivalent resistance:

rad?

1 1 1 1 1
S . ¥ =4447W/'C  R_. =0.00225 ‘C/W
R, R, R_, 0.00345 0.00646 S

eq ra

Ry =R, +R, + R, =0.000442 + 0.000047 + 0.0025 = 0.00273 “C/W
g Te2"Ts _ 22-0

= = 8029 W
R, 0.00274

Prof. Dr. Faruk Aring Spring 2013
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To check the validity of our original assumption (T, = 5 °C), determine the outer

surface temperature from

. T,-T .
Q= % = T,=T,-QR,, =22-(8029)(0.00225)=4 °C

eq

The calculations need not to be repeated with T, = 4 °C. Why?

Prof. Dr. Faruk Aring Spring 2013
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3.6 Thermal Contact Resistance

Prof. Dr. Faruk Aring

» Temperature

»>

- e =

Distance

If two solids are not
metallurgically bonded
together, the anlarged

view is as shown in the

Figure.

Spring 2013
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The heat transfer across the actual contact points and the small air (gas) gaps is

mainly by conduction. Radiation is negligible at room temperatures.

The thermal conductivity of a gas (air) is smaller than that of a solid. Therefore, the
rate of heat flow is reduced due to the presence of stagnant gas in the gaps. The

extra resistance to heat flow is called thermal contact resistance.

The interface thermal conductance h in W/m2.K is determined by experiments. The

reciprocal of h, 1/h, is called specific thermal contact resistance. R

cont"

h increases with increasing interface pressure (increased solid to solid contact

area) and decreases with increasing surface roughness and waviness.

Prof. Dr. Faruk Aring Spring 2013
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Example 14

A boiler wall is made up of two layers, A and B. Thickness and thermal conductivity

of Aare L, = 240 mm and k, = 0.2 W/m."C, respectively. For B, thickness and

thermal conductivity are L; = 525 mm and k; = 0.3 W/m.’C, respectively. Inner

surface of A is maintained at T, = 1000 °C and outer surface of B is maintained at T,

= 250 °C. There is a contact thermal resistance of R_, = 0.050 "C/W per unit area

existing at the interfac]e.
|

| = 1 T

-__\_\--
| I -

e | "'-":_:I' e TR

.I'\.'

£ Cl

ST ' ™

— -y

Prof. Dr. Faruk Aring

R0NC

Calculate
(a) The heat lost per m? area;

(b) The temperature drop at the

interface.

Spring 2013
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SR T-T,
Heat flux: q L, L L, . N
ki ki ki cont ki
A B A B
] T -T, 1000 - 250 )
q= = =250 W/m
L vr_ sl 024 o 0525
K, "k, 0.2 0.3
_T,-T, _1000-T, . B .
250 = = — > T,=700°C
K, 0.2
T, -T, T, - 250 .
= = => =
250 = = . T, = 687.5 °C
K, 0.3

Prof. Dr. Faruk Aring
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3.7 Variable Thermal Conductivity

If we have a solid whose thermal conductivity strongly varies with temperature or if
temperature differences are quite large, then this dependence has to be accounted
for. In general, the solutions are complicated, but for one dimensional, steady state

case, they are straight forward and relatively easier.

3.7.1 Slab with Variable Thermal Conductivity

L% /A s Differential Equation: dix(k(T) Z—Ij =0
k(T) 3 (1) T=T, atx=0
~ Boundary Conditions:
e (2) T=T, atx=L
x=0 x=L Question: Q= ?

Prof. Dr. Faruk Aring Spring 2013



Bilkent University ME — 212 THERMO-FLUIDS ENGINEERING I

Solution:  k(T) (;—T =C => K(T)dT =Cdx
X

If k(T) is a known function of temperature, the distribution, T(x), can easily be found.

T
Fourier's law: Q=Aq=-AK(T) d— =-AC constant

dx

T L T
1 _ _ B _ _ 1 1
Integrate both sides to find C: Tfk(T) dT =C ,([dx =CL => C= T 7_!-k(T) dT

If k(T) is a linear function of temperature such as K(T) =k, (1+5T)

A T, +T,\(T, - T
2 (ke 1+ B T)dT =AKk, [1+ 5 21| 2
LT{ AT ( p zj(Lj

Prof. Dr. Faruk Aring Spring 2013
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L
ni

- TO + T1
If mean thermal conductivity is defined as Kn =Ko |1+ 0 T

Q=AKk (To - T1) This is the same solution as before except that k is

evaluated at the arithmetic mean temperature.

Prof. Dr. Faruk Aring Spring 2013
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,Q?}ii;;

Example 15

Determine the heat flux across 15 cm thick slab when one face is kept at T, = 500 K
an the other face at T, = 300 K. The thermal conductivity varies linearly with

temperature as k(T) =k, (1 + B T) where k, = 0.0346 W/m.K and 3 = 0.0036 K-'.

. T+T,YT,-T
=k |1+ 1 2 171
: ( F= j(Lj

= (0.0346) {1 +(0.0036 (500 ; 300)}(500 i 300)

0.15
=112.57 W/m?

Prof. Dr. Faruk Aring Spring 2013
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Example 16

A wafer of silicon, 3 mm thick and 2 cm square, is used in an electronic device.
One side of the device is held at 85 °C and the other is held at 25 °C. The thermal
conductivity of silicon varies with temperature as k = k, (1 + 8 T), where k, = 15
W/m.K, B = 0.00556 °C',and T is in °C.

(a) Determine the HT rate (in W) if k is evaluated at its average temperature.

(b) Determine the HT rate (in W) if the temperature dependence of k is taken into

account.

Top surface
g =890 ™

Botiom surface .___,.-"'"-
1= 200

Prof. Dr. Faruk Aring Spring 2013
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3.7.2 Hollow Cylinder with Variable Thermal Conductivity

h = d___,l-“f {
&

dT

Solution: rk(T) — =C

dr

Prof. Dr. Faruk Aring

Differential Equation:

Boundary Conditions:

Question:

E(r k(T) ﬂj =0
dr dr

(1) T=T, atr=a
(2) T=T, atr=b

=> [K(T)dT=C T%

Spring 2013
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Q=2rrLg=-27xrL [k(T) ‘;—T} -2z S =200
r r
. 2zL %
Q= b jk(T) dT If K(T) is known, Q is calculated, easily.
In(é) T,

3.8 One-dimensional Fin Equation

Thins trips of metals called fins (or extended surfaces) are attached to the surface
of a solid to inrease the heat transfer area and hence the heat transfer by

convection between the surface and the fluid surrounding it.

Fins are generally used on the surface where the convective heat transfer

coefficient is low. Example: car radiator.

Prof. Dr. Faruk Aring Spring 2013
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Examples of Extended Surfaces - Fins

-_— ==

—
-

-

Straight Fins Annular Fin Pin Fin
uniform and non-uniform cross section

Prof. Dr. Faruk Aring Spring 2013
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Liquid flow

Gas flow

Spring 2013
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Prof. Dr. Faruk Aring

Newton’s Law of Cooling:

Qeow =AD (T, -T.)

Two ways to increase the rate of

heat transfer:

> increasing the heat transfer

coefficient;

» increase the surface area

> fins

Spring 2013
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[— qcund.uut

q{:und,in = qnund,uut + qmﬂv,uut

Prof. Dr. Faruk Aring Spring 2013
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3.9 Temperature Distribution and Heat Flow in Fins of Uniform Cross Section

Volume
element

and A+ AY

Bt hiT,

Prof. Dr. Faruk Aring

Under steady-state conditions, the
energy balance on this volume can

be expressed as

Rate of heat
conduction into | =

Rate of heat
conduction from

the element at x the element at x+Ax

Rate of heat
+ | convection from
the element

= QCOI’Id,X+AX + Qconv

Qcond X

Spring 2013
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éﬁ\ !14

Qcond,x = Qcond,x+Ax + C?c:onv

Qcond,x+Ax +h(pAX)(T-T)) where p is the perimeter

Qcond,x+Ax - Qcond,x - h p (T _ Too)
AX

As Ax goes to zero: d Qeong =hp(T-T.)

d x .
N orios [ aw: Qcond =-kA, ﬂ where A_ is the cross-sectional
d X area
d—(kAC ﬂj -hp(T-T.)=0
d x

Prof. Dr. Faruk Aring Spring 2013
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w5

i

d d T(x) B
H(kAC e )-hp (T(x)-TOO) =0

For constant cross section, A_, and thermal conductivity, k, and

hp
. A = T(y) m= |——
defining: 6(x) = T(x) - T. and kA,
2
d 62 _ m2 e - O
d x

General Solution: 8(x)=C, e™* +C, e ™"

The constants, C, and C,, are to be determined from boundary conditions

Prof. Dr. Faruk Aring Spring 2013
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Fin Equation: d’e -m?0=0| O(x) =T T 4 m= hp
g ‘ d X2 (X) = (X) — I, an ” AC
General Solution(s): B(x)=C,e™ +C, e ™

6(x) = C, cosh(m x) + C, sinh(m x)
B(x) = C; cosh(m (L - x)) + C, sinh(m (L - x))

Which general solution is used depends on the given boundary conditions. Use the

one which is easier to apply the BC’s to determine the constants.

Remember the definitions to be used to convert one solution to the other.

cosh(x) = 2 +2e and  sinh(x) = < —2e

Prof. Dr. Faruk Aring Spring 2013
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L
oni

Boundary Conditions

:E;: 1., H
L
0° +\. X
S Specified )

temperature /

(a) Specitied temperature
(D) Negligible heat loss

(¢) Convection

(d) Convection and radiation

At the fin base (x=0): 6(0)=86, =T, -T,

Prof. Dr. Faruk Aring

Spring 2013
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i hp 3.9.1 Infinitely(!) Long Fin T = T

—Tix) =T+ (I, - T)e VEA_ fin tip 0

For a sufficiently long fin, the temperature at
oo ————= - the fin tip approaches the ambient

temperature, i.e., T(L) => T,

—_———_——_———
|:--

{0 -
| . The boundary condition becomes
| |
| [

i i B(x > ©)=T(L)-T. =0
" h. T, |

f’i‘. k D ) Question: How long is “long™?

Il‘1“3'\\ ' v
I |
A | L > 5 KA

hp

Prof. Dr. Faruk Aring Spring 2013
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Infinitely(!) Long Fin T, . = T,

2
de-m26=0 m= |—

Fin Equation:
: e KA

General Solution: B(x)=C,e™ +C, e ™

Boundary Conditions:  B(x - ) =T(L)-T, =0 = C, =0

Prof. Dr. Faruk Aring Spring 2013
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Infinitely(!) Long Fin Tenie = T

T(x)-T < en
e(x)zebemx © =g M =g k A,

T, -T,
Total rate of heat transfer from the fin:
Q = j h p 6(x) dx Both equations should give the same result:

x=0
Q=-Ackg—e Q=A k6, m=6, JphkA,
Xleeo =(T,-T,) JphkA,

Prof. Dr. Faruk Aring Spring 2013
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3.9.2 Fin with Adiabatic Tip (negligible heat flow at the tip)

2

Fin Equation: -m*8=0

d x?

General Solution: ~ 8(x) = C, cosh(m (L - x)) + C, sinh(m (L - x))

Boundary Conditions: el =0 = C, =0
dx|,_,
6(0)=6,=T, -T = C, = S,
b < > cosh(m L)

cosh(m (L - x))

B(x) =6,
cosh(m L)

Prof. Dr. Faruk Aring Spring 2013
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Fin with Adiabatic Tip (negligible heat flow at the tip)

cosh(m (L - x))
cosh(m L)

Temperature profile: 8(x) =6,

Total rate of heat transfer from the fin:

Akde Q =6, mA_ktanh(m L)
d X[, =(T,-T,)JphkA, tanh(m L)

Prof. Dr. Faruk Aring Spring 2013
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3.9.3 Fin with Convection at the Tip

d°e
Fin Equation: I m’6=0

General Solution: ~ 6(x) = C, cosh(m (L - x)) + C, sinh(m (L - x))

do i
Boundary Conditions: k —| +hy 6(L)=0
d X|._ : .
x=L | hy, is not necessarily
8(0)=06, =T, -T, equalto h

h,
cosh(m (L - x)) + —" sinh(m (L - x))
8(x) = 6, mK
cosh(m L) + —® sinh(m L)
m Kk

Prof. Dr. Faruk Aring Spring 2013



(§)) Bilkent University

ME - 212 THERMO-FLUIDS ENGINEERING I

Fin with Convection at the Tip

Qﬁn
‘ Convection
-|—-""/r
I
- L -
|
(a) Actual fin with :
convection at the tip |
A
} | "¢
Qtin p |
| I
| I
|
| —
|
-.'. L . -
L

(b) Equivalent fin with insulated tip

Prof. Dr. Faruk Aring

Insulated

A practical way of accounting for the
heat loss from the fin tip is to replace
the fin length L in the relation for the
insulated tip case by a corrected

length defined as

L

c,rectangular

L

112
—
+

c,cylindrical

Spring 2013
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3.10 Fin Efficiency

=

Prof. Dr. Faruk Aring

To maximize the heat transfer from a fin, the
temperature of the fin should be uniform (maximized)

at the base value of 7, .

In reality, the temperature drops along the fin, and

thus the heat transfer from the fin is less.

To account for the effect, we define a fin efficiency:

Qﬁn i Actual Heat Transfer Rate from the Fin

MTfin ~ : " Ideal Heat Transfer Rate from the Fin
Q fin max if the entire fin were at the base temperature

Qﬁn = i h Aﬁn (Tb -T,)

Spring 2013
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In most cases, fins have variable cross sectional areas and that makes the solution

complicated. For a variety of fin geometries the calculations are presented in terms

the fin efficiency.

Qi = 15 DA, (T, - T,) = m, WA, 6
For the case of a fin with negligible heat flow at the tip:

Am =pL Where p = Perimeter of the fin and L = Length of the fin

Quew =PLHB, Qs = 6, \/p hk A tanh(mL) as found before

Q. _ 6, ypLkA,, tanh(mL) 4 tanh(m L)
Qideal 6, pLh g m L

nﬁn -

Prof. Dr. Faruk Aring Spring 2013
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There are charts available that gives n. for various fin shapes as a function of

L /2 %t where t is the thickness of the fin at the base.

The total heat transfer from a finned surface is:

Qz‘oz‘al = C-)ﬁn + Qunﬁnned
= i Ag D B, + (A

B Afin) h eb

total

As a practical guide, the ratio (p k / A h) should be much larger than unity to justify
the use of fins. Although the surface area of heat transfer is increased, the thermal

resistance over the portion of the surface where the fins are attached is also

increased.

Prof. Dr. Faruk Aring Spring 2013
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100

60
&
=

40 L=L+1f2

-""-‘1. = L‘..F
S ﬂrg
20
0
0 0.5 1.0 1.5 2.0 2.9
L2 (kA Y~
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Example 17
Compare n., of a plate fin of length L = 1.5 cm,
JT thickness t = 0.2 cm, for the following cases:
:[L a) Fin material is Al (k = 207.64 W/m.K) and h =
ﬁ K 283.9 W/im2.K
| X b) Fin material is steel (k = 41.5 W/m.K) and h =
7" L—— 510.9 W/m2.K

Assume negligible heat loss from the tip.

tanh(m L) p h 2 h 2h
m L Ak  Vkt kt

77ﬁn =

Prof. Dr. Faruk Aring Spring 2013
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— =g(1+_j;g if w>>t l;Obesides1
t w t "

tanh (0.015)\/
_tanh(mL) _ { (207.64) (0.002)
(a) Nin = -

(2) (283.9) }
= 0.91

m L 0.015) | (2)(283.9)
| (207.64) (0.002)

(2) (510.9) }

tanh (0.015)\/
tanh(mL) _ { (41.5) (0.002)

A (2) (510.9) P>

(0.015) \/
(41.5) (0.002)

Solve the same problem using the fin-efficiency Figure.

Prof. Dr. Faruk Aring Spring 2013
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Longitudinal thin fins are attached

on the outer surface of a tube of

inside radius r,, outside radius r,,

and legth L. The hot and cold fluids

flowing inside and outside the tube

have mean temperatures T. and T,,

and heat transfer coefficients h, and

h,, respectively.
The total heat transfer area on the outer surface of the tube, including the surface

areas of the fins and the unfinned portion of the tube, is A, m? and the ratio of the fin

surface area A, to the total heat transfer are A, is B. The fin efficiency n,, and the

fin

thermal conductivity k of the tube material are given.

Prof. Dr. Faruk Aring Spring 2013
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a) Derive an expression for the heat transfer rate Q._through the finned tube.

fin

b) Compare Q;, with the heat transfer rate Q, for the case with no fins on the tube.

fin

The thermal resistance
concept can be used as

shown in the Figure.

R, IS the thermal resitance

of the outside flow including

the effects of the longitudinal

= fins.

Prof. Dr. Faruk Aring Spring 2013
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Total heat transfer rate from the finned surface:

Q,, = Min Asn Ny B, + (A, -

fin

) h, 6,

f|n

inn =1 B+ (1-B)A h, 8, if p=—5

Define area-weighted fin efficicency:  in = "7fin g+ (-p5)

- T, - T,
inn 77f/n Atot h (T T )_ R =
of
Theref Ry = L
ereiore.: of :
f nﬁn Atot h

Prof. Dr. Faruk Aring Spring 2013
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Using the known temperatutes, T, and T_, the total heat transfer rate from the finned

surface becomes:

- T-T
inn = I .
R+ R, + R
R = . and R, = — 1 in[%
271, Lh 27zLk \r,
T -T, i 1
(b) If there are no fins: Qb = R +R, + R, where R, = >zr Lh,
inn RI . Rt . Ro

Prof. Dr. Faruk Aring Spring 2013
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3.11 Fin Effectiveness

o Lxl I ’ )
Z S \
= _{_“:IIH'I
T
=i lin
Qnoﬁn

T,

Ay

Prof. Dr. Faruk Aring

The performance of the fins is judged on the
basis of the enhancement in heat transfer relative
to the no-fin case.

The performance of fins is expressed in terms of

the fin effectiveness ¢, defined as

Qﬁn - Qﬁn
: hA, (T, -T
Qno fin 2 ( o OO)

Efin —

Spring 2013
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Remarks Regarding Fin Effectiveness

* The thermal conductivity k of the fin material should be as high as possible. It is

no coincidence that fins are made from metals.
= The ratio of the perimeter to the cross-sectional area of the fin p /A, should be
as high as possible.

* The use of fins is most effective in applications involving a low convection heat

transfer coefficient.

* Hence, the use of fins is more easily justified when the medium is a gas instead
of a liquid, and the heat transfer is by natural convection instead of by forced

convection.

Prof. Dr. Faruk Aring Spring 2013



ME - 212 THERMO-FLUIDS ENGINEERING I

Overall Effectiveness

An overall effectiveness for a finned surface
is defined as the ratio of the total heat transfer

from the finned surface to the heat transfer

=wxH

A[m fin

Aunﬁn: wx H-—3IX({(txXw)
Aﬂﬂ:jXLKW-FIXW

= 2 x L. xw (one [in)

Prof. Dr. Faruk Aring

from the same surface if there were no fins.

Qﬁn — h (Aunﬁn B T1fin Aﬁn)
Efinoverall = h A

no fin
Qno fin

Spring 2013
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Proper Length of a Fin

T
TI - T(x)
AT = high An important step in the design of a fin
AT=low! AT=0 | . A :
t : : is the determination of the appropriate
I I . . .
AT | | length of the fin once the fin material
Tol——r_ 1 == | L . . .
I I I and the fin cross section are specified.
| | L
0 Hiol | Low | N X :
1gh | LOW o The temperature drops along the fin
heat I heat I heat I
transfer | transfer | transfer | exponentially and asymptotically
| | |
| | |

approaches the ambient temperature

‘ ‘ at some length.
T,

Prof. Dr. Faruk Aring Spring 2013
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Fin Arrays

i
i

S
al

o L
2 Tn

(a) (b)
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Total surface area: A =NA; + A,
"4 a

Number of fins Area of exposed base (prime surface)

9,

Total heat flow rate: Q; =N 7, hA, 6, +hA, 8, =n, hA, 6, = >

t,0

N A
Overall finned-surface efficiency: 7, = 1 - L (1-n)
t
Overall surface resistance R., = eb = 1
\Y; u | ; = =
= Qt o h At

Prof. Dr. Faruk Aring Spring 2013
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Equivalent thermal circuit

-
(NmshA )™

e, ‘ —VVVVNV
r =N
- — qp Tyo—— ._\\ - oT
Tb T4,
: \ i
—_—

[A(A, -NA)T

/J—"’ » 4

T)0 VVVVIVAN
el h (nr) HEEA.':]'_1

(a)

Prof. Dr. Faruk Aring Spring 2013



Doy,

'%@ Bilkent University ME - 212 THERMO-FLUIDS ENGINEERING I

N )
enr ot

Example 19

For the turbine blade and operating conditions shown in the figure,

a) Determine whether blade temperatures are less than the maximum allowable
value (1050 °C) for the prescribed operating conditions;

b) Find the heat loss from the blade.

Assume adiabatic tip.

Too= 1200 °C ///"

h =250 W/m2-K

Turbine blade, 4.2
k=20WIm-K,AC=6x10 m¥,
P=011m

“e/—Tp, =300°C Disc

Prof. Dr. Faruk Aring Spring 2013
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Assumptions:
(1) One-dimensional, steady-state conduction in the blade, (2) Constant k,

(3) Adiabatic blade tip, (4) Negligible radiation.

Analysis: Conditions in the blade are determined by Case B of Table 3.4.

(a)

With the maximum temperature existing at x =L, Eq. 3.75 yields
TL)-T, _ 1 i hp _ [(250) (0.1_14) —47.87 m-
T, -T, cosh(mL) KA, (20) (6 107)

mL=47.87m "' x0.05m = 2.59

Prof. Dr. Faruk Aring Spring 2013
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cosh(m L) = 5.51

T(L) = 1200 + 3005'511200 = 1037 °C

subject to the assumption of an adiabatic tip, the operating conditions are

acceptable.

(b)
M= JhpkA, 8, =+(250) (0.11) (20) (6 10) (- 900) = - 517 W

Q, = M tanh(m L) = (- 517) (0.983) = - 508 W

Qp =—Qf =508 W

Prof. Dr. Faruk Aring Spring 2013
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Comments:

Radiation losses from the blade surface contribute to reducing the blade
temperatures, but what is the effect of assuming an adiabatic tip condition?

Calculate the tip temperature allowing for convection from the gas.

Prof. Dr. Faruk Aring Spring 2013
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Example 20
Determine the maximum allowable power for a 20 mm x 20 mm electronic chip
whose temperature is not to exceed 85 °C when the chip is attached to an air-

cooled heat sink with N = 11 fins of prescribed dimensions.

T, = 85°C
W= 20 mm R} = 2x10°6 m2-K/W
_,{ — k=180 W/m-K
Ly=3mm —
T T. Rb Too
L= 1amm A —> AWSAMA AN
Jc
i a Rt,c R0

T,=200c S K2 K—=3=18mm
h =100 W/m2-K

Prof. Dr. Faruk Aring Spring 2013
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3.12 Critical Radius of Insulation

Consider the insulated cyclinder

Insulation

shown in the Figure. T, is kept

constant.

Q= _ 11T
Heat flow rate: R R

N
ins conv

Rins = ; In rl
27zLk |t

_ 1
Y 2xr, Lh,

R

If r, increases, R, . increases, but R ., decreases. What happens to Q?

conv

Prof. Dr. Faruk Aring Spring 2013



(@ ) Bilkent University

ME - 212 THERMO-FLUIDS ENGINEERING I

O

{-}h;u'u

max

Prof. Dr. Faruk Aring

Q reaches a maximum value at a
certain radius r,, and this is called
the critical radius of insulation, r,
=r,.
Set the first derivative of Q with

respect to r, equal to zero. The

maximum occurs atr..
k

rcrzh_

Spring 2013
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Physical significance: Heat loss from a pipe increases with addition of insulation if

pipe radius r, is less than r_, until r_. is reached. Then, it starts to decrease.

If the effect of heat loss by radiation is included, the critical radius is somewhat

lowered.

Prof. Dr. Faruk Aring Spring 2013
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