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Heat transfer and temperature are closely related, but they are of different nature.

Temperature is a scalar quantity with only a magnitude.

Whereas heat transfer is a vector quantity with direction as well as a magnitude.
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Symbols and Units

T. Temperature, in °C or K

t. Time, s

A: Area, m?

Kk, or A: Thermal conductivity, W/m.°C or W/m.K
Q :Heatflow rate: J/s or W

q - q’= Q/A: Heat flux, W/m?

.,

€.n’ Ogor’ q”’: Thermal energy generation rate, W/m3
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2.1. Heat Flux Components

In general, temperature varies in all

T T$T2 } directions, hence there is heat flow in
H
> H=L p those directions.
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Fourier’s Law of heat conduction

QXnd,x — qcond,x = k aT(téX,y,Z)
" X
Qcond,y = q =-k aT(t’X’y’Z) ~ C.Icond = qx T+ qy _j + qz R
cond,
A, Y oy
Qcond,z — qcond,z = k 5T(t,X,y,Z)
A 0z 3

z

Note that the thermal conductivity, k, at any given location does not vary at uniform
temperature with the direction at that point for an isotropic medium, i.e., k is not a
function of space variables. Exceptions: laminated sheets, crystals, wood (material
with grains), etc.
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The thermal conductivity, k or A, may also vary with temperature.
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2.2. Differential Equation of Heat Conduction

The above equations imply that if the temperature distribution is known, then the rate

of heat flow in all directions can be found.

The temperature distribution in a medium is determined from the solution of the
differential equation of heat conduction subject to a set of appropriate boundary

conditions.

Consider the following infinitesimaly small volume element (Ax Ay Az) and write the

energy balance:
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Net rate of heat flow Rate of energy Rate of increase of

7 entering by conduction  + 1 generated

internal energy i
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Rate of heat  Rate of heat Rate of heat  Rate of change

conduction = conduction + generation — of the energy
atx, y,and z at x+Ax, y+A4y, inside the content of the
l and "+A" element element

AN

(Q + Q ; T Q \ éx-l—&x y+ﬁy z+,ﬁ_ gen element — Z;mem
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2.3. Heat Conduction Equation in Other Coordinate System:
Cartesian Coordinate System:

0 (L OT\ 0 ( 0T\ 9( or\ ., _  oT
ox\ox) Tay\Kay) Taz\k3z) T TPS G

Heat Heat
generated  stored

Heat conducted

Cylindrical and Spherical Coordinate Systems:

409 ( T\ 19 ( 9T\ o/ o\ , _  of
r or or ) T2 00\ 90) T 9z\“az) "1 TP

1o LT\ 1 e o\ 1 af . o\ o
™ o )t r2sinz(0) 39\ ¥ 3¢ ) T rZsin o) 90\ SMO) 5 ) T4 =PG5

Prof. Dr. Faruk Aring

Spring 2013



) Bilkent University

ME - 212 THERMO-FLUIDS ENGINEERING I

Cylindrical Coordinate

Systems: (r, 9, z)
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Spherical Coordinate

Systems: (p, 6, ¢)
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General Methodology of Solution

- Solve the three-dimensional partial differential equation of heat conduction
=0 kar+a kar+a kar+m_ oT
ax\"“ox) Tay\"“ay) Taz\"az) 71 TPy

and find the temperature profile, T(x,y,z,t), in the solid.

- Use the initial condition (on time) and the given boundary conditions (two

for each coordinates (x, y, and z for Cartezian system).

- Note that the thermal conductivity, k, may not be constant and can be a

fuction of the space parameters (X, y, and z in Cartesiam system)
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General Methodology of Solution

- Use Fourier’s law of heat condiction to find the heat flow rate in each

direction (Q,, Q,, and Q, for Cartezian system).

QX il kX AX g
OX
- Note that even A, the heat transfer area, can ve a function of the space

coordinate, x

- Find Q=Q,+Q,+Q,
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2.4. Boundary Conditions:

- Specified temperature boundary condition
- Specified heat flux boundary condition

- Convection boundary condition

- Radiation boundary condition

- Interface boundary condition

- Generallized boundary conditions
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Specified temperature boundary condition

T Initially r For one-dimensional heat transfer through a plane
h ‘ h wall of thickness L, for example, the specified

temperature boundary condition can be expressed

L x as

* 7(0,t) =T,

, T (Lt)=T,

The specified temperatures can be constant, which is the case for steady

conduction, or may vary with time.
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The heat flux in the positive x-direction

anywhere in the medium, including the

boundaries, can be expressed by

Heat
Conduction| flux Fourier’'s law of heat conduction as
LI D) _ 9" = —k &
B L dx
’1 iL ; This is the heat flux in the positive x-direction

The sign of the specified heat flux is determined by inspection: positive if the heat

flux is in the positive direction of the coordinate axis, and negative if it is in the

opposite direction.

Prof. Dr. Faruk Aring Spring 2013



)) Bilkent University ME - 212 THERMO-FLUIDS ENGINEERING I

Two special cases — Insulated boundary

Insulated boundary

[I]Hll'.‘.;'[i{}]‘l x, 1) 60°C
ML -L h':
dT(0, 1) _ 0
dx

TiL. n =60°C

= dT(0,t oT(0,t
 IT0D _ o o TOD
Jx dx
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Convection boundary condition

Heat conduction at the Heat convection at the

surface in a selected direction surface in the same direction

Convection | Conduction ;
1
2 . dT(0,¢t)
(S —k ———~=h,[T,,—T(0,t)]
| T0. = Ly ’
[T, - T, B =k D 0x
j Conduction | Convection
jl [ OT(L, t)
T ) kT B [T(LE) =T,
dT(L, 1) 0x
—k — —h[TL.H-T_,]
ox E -
(e 1“[ g
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Radiation boundary condition

Heat conduction at the Radiation exchange at the

surface in a selected direction surface in the same direction

Radiation | Conduction

: . T8 4 4
£,0 IT;L[L g 710, ?}4] =k ° TE}? ) o dx = &0 [T surr 1~ T(O: t) ]
d-'l ;_'-'“2
Tktln 1 T'su]: 2
s 2 . OT(L0)
Conduction | Radiation —k T =g,0 [T(L,t)*— T4surrJ 2]

OTL Y _ L
_LT _Eg'j[n‘[" 7} _Taurr._

Tt
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Interface boundary conditions

Interface

o

Py
Material 5 Material
A B

'ff;'{_rl I l’l',..{_r“_ i
»
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At the interface, the requirements are:

- The same temperature at the area of
contact,

- The heat flux on the two sides of an

interface must be the same.
Ta(xo,t) = Tp(xy, t)

. K aTA(xo;t)= K dTg(x, t)

A ax B ax

-
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Generalized boundary conditions

In general, a surface may involve convection, radiation, and specified heat flux,
simultaneously. The boundary condition in such cases is again obtained from a

surface energy balance, expressed as

Heat transfer to the Heat transfer from the

surface in all modes surface in all modes

Prof. Dr. Faruk Aring Spring 2013



© ) Bilkent University ME — 212 THERMO-FLUIDS ENGINEERING II

Inner
surface

~ =

2]

Convection

Conduction ,— Outer
surface
- I =

Prof. Dr. Faruk Aring

Spring 2013



(@Eﬁ? Bilkent University ME - 212 THERMO-FLUIDS ENGINEERING I

Simplified cases 1«
{_A_\
C tant th | ductivit GZT oE azT + aZT + egen P Cp oT
onstant thermal conductivity = 5 ” =y

Constant thermal conductivity ~ 9T , &°T _ 0°T €gen

AV2 2 > T =0
and steady state OX oy 0z K
Poisson equation
Constant thermal conductivity, o°T + o°T + o°T =0
. ox> oy*  0z°
steady state, and no heat generation

Laplace equation
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Variable thermal conductivity, k

The thermal conductivity of a material, in

general, varies with temperature.

An average value for the thermal
conductivity is commonly used when the

variation is mild.

This is also common practice for other
temperature-dependent properties such

as the density and specific heat.

Prof. Dr. Faruk Aring
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Heat generation in solids

' 2
Egen, elecric I Re

Resistance heating in wires gen Vol 2L

Exothermic chemical reactions in a solid

Nuclear reactions in fuel rods

Prof. Dr. Faruk Aring Spring 2013



(
éﬁ\ : ;\4

LTy
LI
Ly
el
REZTIN
L

o G

Bilkent University

ME - 212 THERMO-FLUIDS ENGINEERING I

2.5. Non-dimensional heat conduction parameters

The number of variables in a heat conduction problem can be reduced by

introducing non-dimensional parameters. Non-dimensional scaling provides a

method for developing dimensionless groups that can provide physical insight into

the importance of various terms in the system of governing equations.

/"

Insulated

= gen

e
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Consider the following problem:

A slab in the region 0 < x < L with constant

thermal properties
IC:att=0, T =TO0 (uniform)

BC’s:: at x =0 Insulated surface

atx =L Convection

There is heat generation €gen

Spring 2013
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. . . 82T(X,t) égen - IOCP oT
Differential equation: X2 K K ot

Initial condition: T(x,0)=T, att=0 , 0sx=sL

k I
/) €gen h Boundary Conditions:
Insulated 1y PO _ o atx=0 | t>0
04 > > OX
2) k aT{gt’t) =h (T(LY)-T,) atx=L , t>0

The differential equation can be non-dimensionalized by defining the following non-

dimensional variables:

X=2 and 6= -1,
] T, - T,

Prof. Dr. Faruk Aring Spring 2013
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%0 €, L 06 o ol
. . . = in <X<
Differential equation: X2 (To _ Too) K a(0[ £/ Lz)

for t>0

Initial condition: 6=1 in 0<X<1 fort=0

00
Boundary Conditions: 1) X =0 atX=0 fort>0
2) @=&9 atX=1 for t>0
oX K

Define three non-dimensional parameters

_ _ _at
Biot Number Bi= o Fourier Number Fo = 3
- égen 5
Non-dimensional heat generation: G= K (T T )
Prof. Dr. Faruk Aring 4 )
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Bi and Fo are two important non-dimensional parameters frequently used in heat
conduction problems

The Biot number, Bi, is the ratio of the thermal resistance for conduction inside a

body to the resistance for convection at the surface of the body

Fourier Number, Fo, is a measure of the rate of heat conduction in comparison

with the rate of heat storage in a given volume element.

Fo= 2t - k (1/L) L2 _ Rate of heat conduction across L in volume L°
L pc, L/t Rate of heat storage in volume L°
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